Serebrovskaya, E O* Dotaz Zobrazit nápovědu
Our current understanding of whether B cell involvement in the tumor microenvironment benefits the patient or the tumor - in distinct cancers, subcohorts and individual patients - is quite limited. Both statements are probably true in most cases: certain clonal B cell populations contribute to the antitumor response, while others steer the immune response away from the desired mechanics. To step up to a new level of understanding and managing B cell behaviors in the tumor microenvironment, we need to rationally discern these roles, which are cumulatively defined by B cell clonal functional programs, specificities of their B cell receptors, specificities and isotypes of the antibodies they produce, and their spatial interactions within the tumor environment. Comprehensive analysis of these characteristics of clonal B cell populations is now becoming feasible with the development of a whole arsenal of advanced technical approaches, which include (1) methods of single-cell and spatial transcriptomics, genomics, and proteomics; (2) methods of massive identification of B cell specificities; (3) methods of deep error-free profiling of B cell receptor repertoires. Here we overview existing techniques, summarize their current application for B cells studies and propose promising future directions in advancing B cells exploration.
- MeSH
- B-lymfocyty MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory * MeSH
- podskupiny B-lymfocytů * MeSH
- receptory antigenů B-buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
- MeSH
- B-lymfocyty MeSH
- CD8-pozitivní T-lymfocyty * MeSH
- imunoterapie MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory * terapie metabolismus MeSH
- tumor infiltrující lymfocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
There is considerable clinical and fundamental value in measuring the clonal heterogeneity of T and B cell expansions in tumors and tumor-associated lymphoid structures-along with the associated heterogeneity of the tumor neoantigen landscape-but such analyses remain challenging to perform. Here, we propose a straightforward approach to analyze the heterogeneity of immune repertoires between different tissue sections in a quantitative and controlled way, based on a beta-binomial noise model trained on control replicates obtained at the level of single-cell suspensions. This approach allows to identify local clonal expansions with high accuracy. We reveal in situ proliferation of clonal T cells in a mouse model of melanoma, and analyze heterogeneity of immunoglobulin repertoires between sections of a metastatically-infiltrated lymph node in human melanoma and primary human colon tumor. On the latter example, we demonstrate the importance of training the noise model on datasets with depth and content that is comparable to the samples being studied. Altogether, we describe here the crucial basic instrumentarium needed to facilitate proper experimental setup planning in the rapidly evolving field of intratumoral immune repertoires, from the wet lab to bioinformatics analysis.
- Publikační typ
- časopisecké články MeSH