Thakur, Amit Kumar* Dotaz Zobrazit nápovědu
The present work reviews the liquid antisolvent crystallization (LASC) to prepare the nanoparticle of pharmaceutical compounds to enhance their solubility, dissolution rate, and bioavailability. The application of ultrasound and additives is discussed to prepare the particles with narrow size distribution. The use of ionic liquid as an alternative to conventional organic solvent is presented. Herbal compounds, also known for low aqueous solubility and limited clinical application, have been crystalized by LASC and discussed here. The particle characteristics such as particle size and particle size distribution are interpreted in terms of supersaturation, nucleation, and growth phenomena. To overcome the disadvantage of batch crystallization, the scientific literature on continuous flow reactors is also reviewed. LASC in a microfluidic device is emerging as a promising technique. The different design of the microfluidic device and their application in LASC are discussed. The combination of the LASC technique with traditional techniques such as high-pressure homogenization and spray drying is presented. A comparison of product characteristics prepared by LASC and the supercritical CO2 antisolvent method is discussed to show that LASC is an attractive and inexpensive alternative for nanoparticle preparation. One of the major strengths of this paper is a discussion on less-explored applications of LASC in pharmaceutical research to attract the attention of future researchers.
Arylbenzimidazoles have been synthesized as antimycobacterial agents. An efficient synthesis has been developed for 2-arylbenzimidazoles from o-phenylenediamines and aromatic aldehydes in molecular sieves-methanol system. The methodology is straightforward to get 2-arylbenzimidazoles (3a-3z) in excellent yields with high chemoselectivity over 2-aryl-1-benzylbenzimidazoles (4a-4z). All these benzimidazole analogues were evaluated against M. tuberculosis in BACTEC radiometric assay. The compounds 4y and 4z exhibited potential antitubercular activity against M. tuberculosis H37RV, MIC at 16 µM and 24 µM respectively. The best compound of the series i.e. compound 4y was well tolerated by Swiss-albino mice in acute oral toxicity. Compound 4y possessing a diarylbenzimidazole core, can further be optimized for better activity.
- MeSH
- antituberkulotika chemická syntéza farmakologie MeSH
- aplikace orální MeSH
- bakteriální proteiny antagonisté a inhibitory metabolismus MeSH
- DNA gyráza chemie metabolismus MeSH
- imidazoly chemie farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- myši MeSH
- simulace molekulového dockingu MeSH
- tělesná hmotnost účinky léků MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH