cloud forest
Dotaz
Zobrazit nápovědu
The adult male and female of Polyplax guatemalensis sp. n. are described from the sigmodontine murid rodent Peromyscus grandis Goodwin collected in the Reserva de Biosfera, Sierra de las Minas, Guatemala, at an elevation of 2,200 m. The new species extends the number of known native species of Polyplax in the New World to four with none of them recorded south of Panama. Polyplax guatemalensis is morphologically most closely related to Polyplax auricularis which parasitises a cluster of closely related New World sigmodontine rodents from Canada to Panama. These two species can be distinguished from all other known species of Polyplax by the presence of partially overlapping, subtriangular, anterior abdominal plates in both sexes. Polyplax guatemalensis can be separated from P. auricularis by the abundant tergal abdominal setae and longer pseudopenis in males, and by the presence of one fewer anterior abdominal, subtriangular tergite and sternite in females.
- MeSH
- Anoplura anatomie a histologie klasifikace MeSH
- druhová specificita MeSH
- křeček rodu Peromyscus parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- srovnávací studie MeSH
- Geografické názvy
- Guatemala MeSH
(137)Cs is one of the most important radionuclides released in the course of atmospheric nuclear weapon tests and during accidents in nuclear power plants such as that in Chernobyl, Ukraine, or Fukushima, Japan. The aim of this study was to compare (137)Cs and (40)K concentrations in particular species of mushrooms from selected locations in the Bohemian Forest (Czech: Šumava), Czech Republic, where a considerable contamination from the Chernobyl accident had been measured in 1986. Samples were collected between June and October 2014. Activities of (137)Cs and (40)K per dry mass were measured by means of a semiconductor gamma spectrometer. The (137)Cs values measured range from below detection limit to 4300 ± 20 Bq kg(-1), in the case of (40)K from 910 ± 80 to 4300 ± 230 Bq kg(-1). Differences were found between individual locations, due to uneven precipitation in the course of the movement of the radioactive cloud after the Chernobyl accident. There are, however, also differences between individual species of mushrooms from identical locations, which inter alia result from different characteristics of the soil and depths of mycelia. The values measured are compared with established limits and exposures from other radiation sources present in the environment. In general, it can be stated that the values measured are relatively low and the effects on the health of the population are negligible compared to other sources of ionizing radiation.
- MeSH
- Agaricales chemie MeSH
- monitorování radiace * MeSH
- radioaktivita MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
COVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient's condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.
- MeSH
- algoritmy MeSH
- COVID-19 * MeSH
- internet věcí * MeSH
- lidé MeSH
- poskytování zdravotní péče MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Plants in the field are commonly exposed to fluctuating light intensity, caused by variable cloud cover, self-shading of leaves in the canopy and/or leaf movement due to turbulence. In contrast to C3 plant species, only little is known about the effects of dynamic light (DL) on photosynthesis and growth in C4 plants. Two C4 and two C3 monocot and eudicot species were grown under steady light or DL conditions with equal sum of daily incident photon flux. We measured leaf gas exchange, plant growth and dry matter carbon isotope discrimination to infer CO2 bundle sheath leakiness in C4 plants. The growth of all species was reduced by DL, despite only small changes in steady-state gas exchange characteristics, and this effect was more pronounced in C4 than C3 species due to lower assimilation at light transitions. This was partially attributed to increased bundle sheath leakiness in C4 plants under the simulated lightfleck conditions. We hypothesize that DL leads to imbalances in the coordination of C4 and C3 cycles and increasing leakiness, thereby decreasing the quantum efficiency of photosynthesis. In addition to their other constraints, the inability of C4 plants to efficiently utilize fluctuating light likely contributes to their absence in such environments as forest understoreys.
- MeSH
- Amaranthaceae růst a vývoj fyziologie účinky záření MeSH
- fotony MeSH
- fotosyntéza * MeSH
- izotopy uhlíku analýza MeSH
- lipnicovité růst a vývoj fyziologie účinky záření MeSH
- listy rostlin růst a vývoj fyziologie účinky záření MeSH
- oxid uhličitý metabolismus MeSH
- světlo MeSH
- transpirace rostlin MeSH
- Publikační typ
- časopisecké články MeSH
Natural fluctuations in light intensity may significantly affect the amount of CO assimilated by plants and ecosystems. Little is known, however, about the interactive effect of dynamic light conditions and atmospheric CO concentrations. The hypothesis that elevated CO concentration (EC; 700 μmol CO mol) increases photosynthetic efficiency in dynamic light environments as compared to ambient CO concentration (AC; 385 μmol CO mol) was tested. Sun leaves of European beech ( L.) and current-year shoots of Norway spruce [ (L). Karst.] were exposed to five dynamic light regimes (LRs) occurring within forest canopies due to variable cloud cover or self-shading of leaves and to a steady-state LR. The LRs differed in the time course of incident irradiance, whereas the overall duration (600 s) and total amount of radiation (35.88 mmol photons m) were the same in all LRs. The EC treatment enhanced the amount of CO assimilated under all LRs tested. While the stimulation was only 37 to 50% in beech, it was 52 to 85% in spruce. The hypothesis that photosynthetic efficiency is stimulated by EC was confirmed in LRs when the leaves were pre-exposed to low light intensity and photosynthetic induction was required. By contrast, only a minor effect of EC treatment was found on the rate of induction loss and postillumination CO fixation in both species studied.
... 106 -- Conclusion 108 -- 10 Forests - are we losing them? ... ... 110 -- Forests and history 112 -- Deforestation: a general view 112 -- Deforestation: how much? ... ... 114 -- How much forest? ... ... Both growth and environment 175 -- Conclusion 177 -- 16 Acid rain and forest death 178 -- 17 Indoor air ... ... -- Clouds 270 -- The ozone hole 273 -- Are there other causes? 276 -- Are the scenarios realistic? ...
1st ed. xxiii, 515 s. : il.
The Canary Islands, an archipelago east of Morocco's Atlantic coast, present steep altitudinal gradients covering various climatic zones from hot deserts to subalpine Mediterranean, passing through fog-influenced cloud forests. Unlike the majority of the Canarian flora, Pinus canariensis C. Sm. ex DC. in Buch grow along most of these gradients, allowing the study of plant functioning in contrasting ecosystems. Here we assess the water sources (precipitation, fog) of P. canariensis and its physiological behavior in its different natural environments. We analyzed carbon and oxygen isotope ratios of water and organics from atmosphere, soil and different plant organs and tissues (including 10-year annual time series of tree-ring cellulose) of six sites from 480 to 1990 m above sea level on the Canary Island La Palma. We found a decreasing δ18O trend in source water that was overridden by an increasing δ18O trend in needle water, leaf assimilates and tree-ring cellulose with increasing altitude, suggesting site-specific tree physiological responses to relative humidity. Fog-influenced and fog-free sites showed similar δ13C values, suggesting photosynthetic activity to be limited by stomatal closure and irradiance at certain periods. In addition, we observed an 18O-depletion (fog-free and timberline sites) and 13C-depletion (fog-influenced and fog-free sites) in latewood compared with earlywood caused by seasonal differences in: (i) water uptake (i.e., deeper ground water during summer drought, fog water frequency and interception) and (ii) meteorological conditions (stem radial growth and latewood δ18O correlated with winter precipitation). In addition, we found evidence for foliar water uptake and strong isotopic gradients along the pine needle axis in water and assimilates. These gradients are likely the reason for an unexpected underestimation of pine needle water δ18O when applying standard leaf water δ18O models. Our results indicate that soil water availability and air humidity conditions are the main drivers of the physiological behavior of pine along the Canary Island's altitudinal gradients.
- MeSH
- borovice * MeSH
- ekosystém MeSH
- izotopy kyslíku analýza MeSH
- izotopy uhlíku analýza MeSH
- stromy MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Španělsko MeSH