composite decoupling
Dotaz
Zobrazit nápovědu
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material.
- MeSH
- aktivace enzymů MeSH
- dusík metabolismus MeSH
- enzymy metabolismus MeSH
- hydrolýza MeSH
- mikrobiota * MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- uhlík metabolismus MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Sibiř MeSH
The oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501 exhibits large diel changes in abundance of both Photosystem II (PSII) and Photosystem I (PSI). To understand the mechanisms underlying these dynamics, we assessed photosynthetic parameters, photosystem abundance and composition, and chlorophyll-protein biosynthesis over a diel cycle. Our data show that the decline in PSII activity and abundance observed during the dark period was related to a light-induced modification of PSII, which, in combination with the suppressed synthesis of membrane proteins, resulted in monomerization and gradual disassembly of a large portion of PSII core complexes. In the remaining population of assembled PSII monomeric complexes, we detected the non-functional version of the D1 protein, rD1, which was absent in PSII during the light phase. During the dark period, we also observed a significant decoupling of phycobilisomes from PSII and a decline in the chlorophyll a quota, which matched the complete loss of functional PSIIs and a substantial decrease in PSI abundance. However, the remaining PSI complexes maintained their photochemical activity. Thus, during the nocturnal period of nitrogen fixation C. watsonii operates a suite of regulatory mechanisms for efficient utilization/recycling of cellular resources and protection of the nitrogenase enzyme.
- MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- fixace dusíku MeSH
- fotosyntéza * MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- fykobilizomy metabolismus MeSH
- oceány a moře MeSH
- sinice metabolismus MeSH
- tma MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře MeSH
... Pulse Optimization 247 -- 5.4.1 Shinnar-Le Roux Algorithm 248 -- 5.5 DANTE RF Pulses 254 -- 5.6 Composite ... ... Editing 407 -- 8.7 Polarization Transfer - INEPT and DEPT 409 -- 8.8 Sensitivity 414 -- 8.9 Broadband Decoupling ...
2nd ed. xxi, 570 s., [8] s. obr. příl. : il. ; 25 cm
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH