Cryptomonadales have acquired their plastids by secondary endosymbiosis. A novel clade-CRY1-has been discovered at the base of the Cryptomonadales tree, but it remains unknown whether it contains plastids. Cryptomonadales are also an important component of phytoplankton assemblages. However, they cannot be readily identified in fixed samples, and knowledge on dynamics and distribution of specific taxa is scarce. We investigated the phenology of the CRY1 lineage, three cryptomonadales clades and a species Proteomonas sulcata in a brackish lagoon of the Baltic Sea (salinity 0.3-3.9) using fluorescence in situ hybridization. A newly design probe revealed that specimens of the CRY1 lineage were aplastidic. This adds evidence against the chromalveolate hypothesis, and suggests that the evolution of cryptomonadales' plastids might have been shorter than is currently assumed. The CRY1 lineage was the most abundant cryptomonad clade in the lagoon. All of the studied cryptomonads peaked in spring at the most freshwater station, except for P. sulcata that peaked in summer and autumn. Salinity and concentration of dissolved inorganic nitrogen most significantly affected their distribution and dynamics. Our findings contribute to the ecology and evolution of cryptomonads, and may advance understanding of evolutionary relationships within the eukaryotic tree of life.
- MeSH
- Cryptophyta cytology physiology MeSH
- Plastids physiology MeSH
- Salinity * MeSH
- Life History Traits * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Poland MeSH
Photosynthetic organisms had to evolve diverse mechanisms of light-harvesting to supply photosynthetic apparatus with enough energy. Cryptophytes represent one of the groups of photosynthetic organisms combining external and internal antenna systems. They contain one type of immobile phycobiliprotein located at the lumenal side of the thylakoid membrane, together with membrane-bound chlorophyll a/c antenna (CAC). Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the CAC proteins of cryptophyte Rhodomonas salina. The major CAC carotenoid, alloxanthin, is a cryptophyte-specific carotenoid, and it is the only naturally-occurring carotenoid with two triple bonds in its structure. In order to explore the energy transfer pathways within the CAC complex, three excitation wavelengths (505, 590, and 640 nm) were chosen to excite pigments in the CAC antenna. The excitation of Chl c at either 590 or 640 nm proves efficient energy transfer between Chl c and Chl a. The excitation of alloxanthin at 505 nm shows an active pathway from the S2 state with efficiency around 50%, feeding both Chl a and Chl c with approximately 1:1 branching ratio, yet, the S1-route is rather inefficient. The 57 ps energy transfer time to Chl a gives ~25% efficiency of the S1 channel. The low efficiency of the S1 route renders the overall carotenoid-Chl energy transfer efficiency low, pointing to the regulatory role of alloxanthin in the CAC antenna.
We investigated changes in quality and quantity of extracellular and biomass-derived organic matter (OM) from three axenic algae (genera Rhodomonas, Chlamydomonas, Coelastrum) during growth of Limnohabitans parvus, Limnohabitans planktonicus and Polynucleobacter acidiphobus representing important clusters of freshwater planktonic Betaproteobacteria. Total extracellular and biomass-derived OM concentrations from each alga were approximately 20 mg l-1and 1 mg l-1respectively, from which up to 9% could be identified as free carbohydrates, polyamines, or free and combined amino acids. Carbohydrates represented 54%-61% of identified compounds of the extracellular OM from each alga. In biomass-derived OM of Rhodomonas and Chlamydomonas 71%-77% were amino acids and polyamines, while in that of Coelastrum 85% were carbohydrates. All bacteria grew on alga-derived OM of Coelastrum, whereas only Limnohabitans strains grew on OM from Rhodomonas and Chlamydomonas. Bacteria consumed 24%-76% and 38%-82% of all identified extracellular and biomass-derived OM compounds respectively, and their consumption was proportional to the concentration of each OM compound in the different treatments. The bacterial biomass yield was higher than the total identifiable OM consumption indicating that bacteria also utilized other unidentified alga-derived OM compounds. Bacteria, however, also produced specific OM compounds suggesting enzymatic polymer degradation or de novo exudation.
- MeSH
- Amino Acids analysis metabolism MeSH
- Biomass MeSH
- Burkholderiaceae classification growth & development metabolism MeSH
- Chlorophyta metabolism MeSH
- Comamonadaceae classification growth & development metabolism MeSH
- Cryptophyta metabolism MeSH
- Carbohydrate Metabolism physiology MeSH
- Plankton metabolism microbiology MeSH
- Polyamines analysis metabolism MeSH
- Carbohydrates analysis MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
Heterotrophic nanoflagellates (HNF) are considered as major planktonic bacterivores, however, larger HNF taxa can also be important predators of eukaryotes. To examine this trophic cascading, natural protistan communities from a freshwater reservoir were released from grazing pressure by zooplankton via filtration through 10- and 5-µm filters, yielding microbial food webs of different complexity. Protistan growth was stimulated by amendments of five Limnohabitans strains, thus yielding five prey-specific treatments distinctly modulating protistan communities in 10- versus 5-µm fractions. HNF dynamics was tracked by applying five eukaryotic fluorescence in situ hybridization probes covering 55-90% of total flagellates. During the first experimental part, mainly small bacterivorous Cryptophyceae prevailed, with significantly higher abundances in 5-µm treatments. Larger predatory flagellates affiliating with Katablepharidacea and one Cercozoan lineage (increasing to up to 28% of total HNF) proliferated towards the experimental endpoint, having obviously small phagocytized HNF in their food vacuoles. These predatory flagellates reached higher abundances in 10-µm treatments, where small ciliate predators and flagellate hunters also (Urotricha spp., Balanion planctonicum) dominated the ciliate assemblage. Overall, our study reports pronounced cascading effects from bacteria to bacterivorous HNF, predatory HNF and ciliates in highly treatment-specific fashions, defined by both prey-food characteristics and feeding modes of predominating protists.
- MeSH
- Cercozoa * MeSH
- Cryptophyta MeSH
- In Situ Hybridization, Fluorescence MeSH
- Food Chain * MeSH
- Fresh Water MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
- MeSH
- Comamonadaceae classification genetics isolation & purification MeSH
- Cryptophyta growth & development MeSH
- Ecosystem MeSH
- Eutrophication MeSH
- Phytoplankton growth & development MeSH
- Seasons MeSH
- Cyanobacteria growth & development MeSH
- Fresh Water microbiology MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
We examined the proportions of major Betaproteobacteria subgroups within bacterial communities in diverse nonaxenic, monospecific cultures of algae or cyanobacteria: four species of cryptophyta (genera Cryptomonas and Rhodomonas), four species of chlorophyta (genera Pediastrum, Staurastrum, and Chlamydomonas), and two species of cyanobacteria (genera Dolichospermum and Aphanizomenon). In the cryptophyta cultures, Betaproteobacteria represented 48 to 71% of total bacteria, the genus Limnohabitans represented 18 to 26%, and the Polynucleobacter B subcluster represented 5 to 16%. In the taxonomically diverse chlorophyta group, the genus Limnohabitans accounted for 7 to 45% of total bacteria. In contrast, cyanobacterial cultures contained significantly lower proportions of the Limnohabitans bacteria (1 to 3% of the total) than the cryptophyta and chlorophyta cultures. Notably, largely absent in all of the cultures was Polynucleobacter necessarius (Polynucleobacter C subcluster). Subsequently, we examined the growth of Limnohabitans strains in the presence of different algae or their extracellular products (EPP). Two strains, affiliated with Limnohabitans planktonicus and Limnohabitans parvus, were separately inoculated into axenic cultures of three algal species growing in an inorganic medium: Cryptomonas sp., Chlamydomonas noctigama, and Pediastrum boryanum. The Limnohabitans strains cocultured with these algae or inoculated into their EPP consistently showed (i) pronounced population growth compared to the control without the algae or EPP and (ii) stronger growth stimulation of L. planktonicus than of L. parvus. Overall, growth responses of the Limnohabitans strains cultured with algae were highly species specific, which suggests a pronounced niche separation between two closely related Limnohabitans species likely mediated by different abilities to utilize the substrates produced by different algal species.
- MeSH
- Betaproteobacteria classification genetics growth & development metabolism MeSH
- Chlorophyta chemistry MeSH
- Cryptophyta chemistry MeSH
- Ecosystem MeSH
- In Situ Hybridization, Fluorescence MeSH
- Environmental Microbiology MeSH
- Cyanobacteria chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.
- MeSH
- Apicomplexa genetics physiology MeSH
- Biodiversity * MeSH
- Chlorophyta classification genetics physiology MeSH
- Cryptophyta genetics physiology MeSH
- Dinoflagellida genetics physiology MeSH
- Eukaryota classification genetics physiology MeSH
- Glaucophyta classification genetics physiology MeSH
- Haptophyta genetics physiology MeSH
- Stramenopiles genetics physiology MeSH
- Charophyceae genetics physiology MeSH
- Rhizaria genetics physiology MeSH
- Rhodophyta classification genetics physiology MeSH
- Reproduction physiology MeSH
- Cyanobacteria classification genetics physiology MeSH
- Symbiosis physiology MeSH
- Publication type
- Journal Article MeSH