kink tail
Dotaz
Zobrazit nápovědu
A prospective study to create radiographic classification of caudal vertebral anomalies in dogs was performed and the prevalence of the disorders estimated. Radiographic examination of the caudal vertebrae was performed in 595 client-owned dogs undergoing routine radiological examination of the hip joints. Anomalies of the caudal vertebrae were divided into four groups: (1) congenital anomalies with aberrant fusion of the vertebral epiphysis, like hemivertebra, block or transitional vertebra; (2) morphological anomalies like vertebra curva and dysplastic vertebral epiphysis; (3) post-traumatic changes, represented by fracture or luxation; and (4) degenerative changes, represented by spondylosis, osteophyte formation and mineralisation of intervertebral spaces. A total of 303 caudal vertebral anomalies were detected in 259 dogs (43.53% of all dogs examined). A single type of vertebral anomaly was present in 215 dogs and a combination of two pathologies was recorded in 44 dogs, which represents 83.01% and 16.99%, respectively, of the affected dogs. Congenital anomaly was present in 11.09% of the dogs examined. Sacrocaudal transitional vertebra was the most common congenital anomaly, present in 12.74% of the affected dogs. Radiographic examination of the caudal vertebrae is recommended as an essential part of any screening process to confirm the presence of congenital anomaly as a cause of kinked tail.
HMGB proteins are members of the High Mobility Group (HMG) superfamily, possessing a unique DNA-binding domain, the HMG-box, which can bind non-B-type DNA structures (bent, kinked and unwound) with high affinity, and also distort DNA by bending/looping and unwinding. HMGBs (there are four HMGBs in mammals, HMGB1-4) are highly abundant and ubiquitously expressed non-histone proteins, acting as DNA chaperones influencing multiple processes in chromatin such as transcription, replication, recombination, DNA repair and genomic stability. Although HMGB1 is a nuclear protein, it can be secreted into the extracellular milieu as a signaling molecule when cells are under stress, in particular, when necrosis occurs. Mammalian HMGBs contain two HMG-boxes arranged in tandem, share more than 80% identity and differ in the length (HMGB1-3) or absence (HMGB4) of the acidic C-tails. The acidic tails consist of consecutive runs of only Glu/Asp residues of various length, and modulate the DNA-binding properties and functioning of HMGBs. HMGBs are subject to post-translational modifications which can fine-tune interactions of the proteins with DNA/chromatin and determine their relocation from the nucleus to the cytoplasm and secretion. Association of HMGBs with chromatin is highly dynamic, and the proteins affect the chromatin fiber as architectural factors by transient interactions with nucleosomes, displacement of histone H1, and facilitation of nucleosome remodeling and accessibility of the nucleosomal DNA to transcription factors or other sequence-specific proteins.
- MeSH
- chromatin metabolismus MeSH
- DNA metabolismus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- posttranslační úpravy proteinů MeSH
- proteiny HMGB chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH