multiuser
Dotaz
Zobrazit nápovědu
BACKGROUND: Over the past 25 years, the development of multiuser applications has seen considerable advancements and challenges. The technological development in this field has emerged from simple chat rooms through videoconferencing tools to the creation of complex, interactive, and often multisensory virtual worlds. These multiuser technologies have gradually found their way into mental health care, where they are used in both dyadic counseling and group interventions. However, some limitations in hardware capabilities, user experience designs, and scalability may have hindered the effectiveness of these applications. OBJECTIVE: This systematic review aims at summarizing the progress made and the potential future directions in this field while evaluating various factors and perspectives relevant to remote multiuser interventions. METHODS: The systematic review was performed based on a Web of Science and PubMed database search covering articles in English, published from January 1999 to March 2024, related to multiuser mental health interventions. Several inclusion and exclusion criteria were determined before and during the records screening process, which was performed in several steps. RESULTS: We identified 49 records exploring multiuser applications in mental health care, ranging from text-based interventions to interventions set in fully immersive environments. The number of publications exploring this topic has been growing since 2015, with a large increase during the COVID-19 pandemic. Most digital interventions were delivered in the form of videoconferencing, with only a few implementing immersive environments. The studies used professional or peer-supported group interventions or a combination of both approaches. The research studies targeted diverse groups and topics, from nursing mothers to psychiatric disorders or various minority groups. Most group sessions occurred weekly, or in the case of the peer-support groups, often with a flexible schedule. CONCLUSIONS: We identified many benefits to multiuser digital interventions for mental health care. These approaches provide distributed, always available, and affordable peer support that can be used to deliver necessary help to people living outside of areas where in-person interventions are easily available. While immersive virtual environments have become a common tool in many areas of psychiatric care, such as exposure therapy, our results suggest that this technology in multiuser settings is still in its early stages. Most identified studies investigated mainstream technologies, such as videoconferencing or text-based support, substituting the immersive experience for convenience and ease of use. While many studies discuss useful features of virtual environments in group interventions, such as anonymity or stronger engagement with the group, we discuss persisting issues with these technologies, which currently prevent their full adoption.
- MeSH
- duševní poruchy terapie MeSH
- duševní zdraví MeSH
- lidé MeSH
- služby péče o duševní zdraví * MeSH
- telemedicína MeSH
- videokonferování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80-200 nm, microvesicles: ~200-1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for routine quantification and characterization of EVs from various sources. Finally, it has the potential to bring a desired level of control into routine experiments and non-specialized labs, thanks to its simple bead-based standardization.
- Publikační typ
- časopisecké články MeSH
... -- 4.3.1 Práce WordPerfectu (WP) v síti 63 -- 4.3.2 Databázový systém FoxPro (FoxBASE+ 2.1 verze multiuser ...