Objective.There is an increasing interest in calculating and measuring linear energy transfer (LET) spectra in particle therapy in order to assess their impact in biological terms. As such, the accuracy of the particle fluence energy spectra becomes paramount. This study focuses on quantifying energy depositions of distinct proton, helium, carbon, and oxygen ion beams using a silicon pixel detector developed at CERN to determine LET spectra in silicon.Approach.While detection systems have been investigated in this pursuit, the scarcity of detectors capable of providing per-ion data with high spatial and temporal resolution remains an issue. This gap is where silicon pixel detector technology steps in, enabling online tracking of single-ion energy deposition. The used detector consisted of a 300μm thick silicon sensor operated in partial depletion.Main results.During post-processing, artifacts in the acquired signals were identified and methods for their corrections were developed. Subsequently, a correlation between measured and Monte Carlo-based simulated energy deposition distributions was performed, relying on a two-step recalibration approach based on linear and saturating exponential models. Despite the observed saturation effects, deviations were confined below 7% across the entire investigated range of track-averaged LET values in silicon from 0.77 keVμm-1to 93.16 keVμm-1.Significance.Simulated and measured mean energy depositions were found to be aligned within 7%, after applying artifact corrections. This extends the range of accessible LET spectra in silicon to clinically relevant values and validates the accuracy and reliability of the measurements. These findings pave the way towards LET-based dosimetry through an approach to translate these measurements to LET spectra in water. This will be addressed in a future study, extending functionality of treatment planning systems into clinical routine, with the potential of providing ion-beam therapy of utmost precision to cancer patients.
- MeSH
- Silicon MeSH
- Linear Energy Transfer * MeSH
- Monte Carlo Method MeSH
- Radiometry instrumentation MeSH
- Publication type
- Journal Article MeSH
Ion-beam radiotherapy is an advanced cancer treatment modality offering steep dose gradients and a high biological effectiveness. These gradients make the therapy vulnerable to patient-setup and anatomical changes between treatment fractions, which may go unnoticed. Charged fragments from nuclear interactions of the ion beam with the patient tissue may carry information about the treatment quality. Currently, the fragments escape the patient undetected. Inter-fractional in-vivo treatment monitoring based on these charged nuclear fragments could make ion-beam therapy safer and more efficient. We developed an ion-beam monitoring system based on 28 hybrid silicon pixel detectors (Timepix3) to measure the distribution of fragment origins in three dimensions. The system design choices as well as the ion-beam monitoring performance measurements are presented in this manuscript. A spatial resolution of 4mm along the beam axis was achieved for the measurement of individual fragment origins. Beam-range shifts of 1.5mm were identified in a clinically realistic treatment scenario with an anthropomorphic head phantom. The monitoring system is currently being used in a prospective clinical trial at the Heidelberg Ion Beam Therapy Centre for head-and-neck as well as central nervous system cancer patients.
- MeSH
- Radiotherapy Dosage MeSH
- Phantoms, Imaging * MeSH
- Humans MeSH
- Heavy Ion Radiotherapy methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4μs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.
- MeSH
- Algorithms * MeSH
- Electrons * MeSH
- Calibration MeSH
- Neutrons MeSH
- Gamma Rays MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.
- MeSH
- Silicon MeSH
- Linear Energy Transfer MeSH
- Proton Therapy * methods MeSH
- Protons MeSH
- Radiometry * methods MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: In-vivo monitoring methods of carbon ion radiotherapy (CIRT) includes explorations of nuclear reaction products generated by carbon-ion beams interacting with patient tissues. Our research group focuses on in-vivo monitoring of CIRT using silicon pixel detectors. Currently, we are conducting a prospective clinical trial as part of the In-Vivo Monitoring project (InViMo) at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. We are using an innovative, in-house developed, non-contact fragment tracking system with seven mini-trackers based on the Timepix3 technology developed at CERN. PURPOSE: This article focuses on the implementation of the mini-tracker in Monte Carlo (MC) based on FLUKA simulations to monitor secondary charged nuclear fragments in CIRT. The main objective is to systematically evaluate the simulation accuracy for the InViMo project. METHODS: The implementation involved integrating the mini-tracker geometry and the scoring mechanism into the FLUKA MC simulation, utilizing the finely tuned HIT beam line. The systematic investigation included varying mini-tracker angles (from 15∘$15^\circ$ to 45∘$45^\circ$ in 5∘$5^\circ$ steps) during the irradiation of a head-sized phantom with therapeutic carbon-ion pencil beams. To evaluate our implemented FLUKA framework, a comparison was made between the experimental data and data obtained from MC simulations. To ensure the fidelity of our comparison, experiments were performed at the HIT using the parameters and setup established in the simulations. RESULTS: Our research demonstrates high accuracy in reproducing characteristic behaviors and dependencies of the monitoring method in terms of fragment distributions in the mini-tracker, track angles, emission profiles, and fragment numbers. Discrepancies in the number of detected fragments between the experimental data and the data obtained from MC simulations are less than 4% for the angles of interest in the InViMo detection system. CONCLUSIONS: Our study confirms the potential of our simulation framework to investigate the performance of monitoring inter-fractional anatomical changes in patients undergoing CIRT using secondary nuclear charged fragments escaping from the irradiated patient.
- MeSH
- Phantoms, Imaging MeSH
- Humans MeSH
- Monte Carlo Method * MeSH
- Heavy Ion Radiotherapy * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH