synteny mapping
Dotaz
Zobrazit nápovědu
The porcine orthologues of human chromosome HSA9q22.31 genes osteoglycin (OGN) and asporin (ASPN) were mapped to porcine chromosome SSC3 using linkage analysis and a somatic cell hybrid panel. This mapping was refined to SSC3q11 using fluorescence in situ hybridization. These results confirm the existence of a small conserved synteny group between SSC3 and HSA9. Polymorphisms were revealed in both genes, including a pentanucleotide microsatellite (SCZ003) in OGN and two single nucleotide polymorphisms (AM181682.1:g.780G>T and AM181682.1:g.825T>C) in ASPN. The two genes were included in a set of markers for quantitative trait loci (QTL) mapping on SSC3 in the Hohenheim Meishan x Piétrain F2 family. Major QTL for growth and carcass traits were centred in the ASPN-SW902 region.
- MeSH
- financování organizované MeSH
- glykoproteiny genetika MeSH
- jednonukleotidový polymorfismus MeSH
- křížení genetické MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- mikrosatelitní repetice MeSH
- prasata genetika růst a vývoj MeSH
- proteoglykany genetika MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
KEY MESSAGE: Making use of wheat chromosomal resources, we developed 11 gene-associated markers for the region of interest, which allowed reducing gene interval and spanning it by four BAC clones. Positional gene cloning and targeted marker development in bread wheat are hampered by high complexity and polyploidy of its nuclear genome. Aiming to clone a Russian wheat aphid resistance gene Dn2401 located on wheat chromosome arm 7DS, we have developed a strategy overcoming problems due to polyploidy and enabling efficient development of gene-associated markers from the region of interest. We employed information gathered by GenomeZipper, a synteny-based tool combining sequence data of rice, Brachypodium, sorghum and barley, and took advantage of a high-density linkage map of Aegilops tauschii. To ensure genome- and locus-specificity of markers, we made use of survey sequence assemblies of isolated wheat chromosomes 7A, 7B and 7D. Despite the low level of polymorphism of the wheat D subgenome, our approach allowed us to add in an efficient and cost-effective manner 11 new gene-associated markers in the Dn2401 region and narrow down the target interval to 0.83 cM. Screening 7DS-specific BAC library with the flanking markers revealed a contig of four BAC clones that span the Dn2401 region in wheat cultivar 'Chinese Spring'. With the availability of sequence assemblies and GenomeZippers for each of the wheat chromosome arms, the proposed strategy can be applied for focused marker development in any region of the wheat genome.
- MeSH
- býložravci MeSH
- chromozomy rostlin MeSH
- DNA primery MeSH
- DNA rostlinná genetika MeSH
- genetická vazba MeSH
- genetické markery MeSH
- genomika MeSH
- jednonukleotidový polymorfismus MeSH
- mapování chromozomů * MeSH
- mikrosatelitní repetice MeSH
- mšice * MeSH
- pšenice genetika MeSH
- rostlinné geny * MeSH
- syntenie MeSH
- umělé bakteriální chromozomy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
Species belonging to the Festuca-Lolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F. pratensis and L. multiflorum genetic maps using Diversity Array Technology (DArT) markers and the DArTFest array.The 530 and 149 DArT markers were placed on genetic maps of L. multiflorum and F. pratensis, respectively, with overlap of 20 markers, which mapped in both species. The markers were sequenced and comparative sequence analysis was performed between L. multiflorum, rice and Brachypodium. The utility of the DArTFest array was then tested on a Festulolium population FuRs0357 in an integrated analysis using the DArT marker map positions to study associations between markers and freezing tolerance. Ninety six markers were significantly associated with freezing tolerance and five of these markers were genetically mapped to chromosomes 2, 4 and 7. Three genomic loci associated with freezing tolerance in the FuRs0357 population co-localized with chromosome segments and QTLs previously identified to be associated with freezing tolerance. The present work clearly confirms the potential of the DArTFest array in genetic studies of the Festuca-Lolium complex. The annotated DArTFest array resources could accelerate further studies and improvement of desired traits in Festuca-Lolium species.
- MeSH
- Brachypodium genetika MeSH
- chromozomy rostlin MeSH
- Festuca genetika MeSH
- fyziologická adaptace genetika MeSH
- genetická vazba MeSH
- genetické markery MeSH
- jílek genetika MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- molekulární sekvence - údaje MeSH
- polymorfismus genetický MeSH
- rýže (rod) genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- syntenie MeSH
- zmrazování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Chromosomal rearrangements are a major driving force in shaping genome during evolution. Previous studies show that translocated genes could undergo elevated rates of evolution and recombination frequencies around these genes can be altered. Based on the recently released genome sequences of Triticum urartu, Aegilops tauschii, Brachypodium distachyon and bread wheat, an analysis of interchromosomal translocations in the hexaploid wheat genotype 'Chinese Spring' ('CS') was conducted based on chromosome shotgun sequences from individual chromosome arms of this genotype. RESULTS: A total of 720 genes representing putative interchromosomal rearrangements was identified. They were distributed across the 42 chromosome arms. About 59% of these translocated genes were those involved in the well-characterized translocations involving chromosomes 4A, 5A and 7B. The other 41% of the genes represent a large numbers of putative interchromosomal rearrangements which have not yet been described. The number of the putative translocation events in the D subgenome was about half of those presented in either the A or B subgenomes, which agreed well with that the times of interaction between the A and B subgenomes almost doubled that between either of them and the D subgenome. CONCLUSIONS: The possible existence of a large number of interchromosomal rearrangements detected in this study provide further evidence that caution should be taken when using synteny in ordering sequence contigs or in cloning genes in hexaploid wheat. The identification of these putative translocations in 'CS' also provide a base for a systematic evaluation of their presence or absence in the full spectrum of bread wheat and its close relatives, which could have significant implications in a wide array of fields ranging from studies of systematics and evolution to practical breeding.
In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge about the function of avian leptin and TNF is limited and they are absent or lowly expressed in adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC) region. This mapping position suggests that avian TNF has a role in regulating immune response. To test its possible interaction with leptin within the immune system and beyond, we compared the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals, in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique to mammals.
- MeSH
- buněčné linie MeSH
- duodenum metabolismus MeSH
- kur domácí genetika metabolismus MeSH
- leptin genetika metabolismus MeSH
- leptinové receptory metabolismus MeSH
- mapování chromozomů * MeSH
- mapování pomocí radiačních hybridů MeSH
- messenger RNA genetika metabolismus MeSH
- metafáze genetika MeSH
- receptory TNF genetika metabolismus MeSH
- regulace genové exprese * MeSH
- savci genetika MeSH
- signální transdukce * MeSH
- syntenie genetika MeSH
- TNF-alfa genetika metabolismus MeSH
- trávení * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.
- MeSH
- chromozomy rostlin genetika MeSH
- délka genomu genetika MeSH
- DNA rostlinná chemie genetika MeSH
- fazol genetika MeSH
- genom rostlinný genetika MeSH
- mapování chromozomů MeSH
- retroelementy genetika MeSH
- rostlinné geny genetika MeSH
- sekvenční analýza DNA metody MeSH
- syntenie MeSH
- vigna genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In contrast to mammals, birds exhibit a slow rate of chromosomal evolution. It is not clear whether high chromosome conservation is an evolutionary novelty of birds or was inherited from an earlier avian ancestor. The evolutionary conservatism of macrochromosomes between birds and turtles supports the latter possibility; however, the rate of chromosomal evolution is largely unknown in other sauropsids. In squamates, we previously reported strong conservatism of the chromosomes syntenic with the avian Z, which could reflect a peculiarity of this part of the genome. The chromosome 1 of iguanians and snakes is largely syntenic with chromosomes 3, 5 and 7 of the avian ancestral karyotype. In this project, we used comparative chromosome painting to determine how widely this synteny is conserved across nine families covering most of the main lineages of Squamata. The results suggest that the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to at least the early Jurassic and could be an ancestral characteristic for Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and Scinciformata). In Squamata chromosome conservatism therefore also holds for the parts of the genome which are homologous to bird autosomes, and following on from this, a slow rate of chromosomal evolution could be a common characteristic of all sauropsids. The large evolutionary stasis in chromosome organization in birds therefore seems to be inherited from their ancestors, and it is particularly striking in comparison with mammals, probably the only major tetrapod lineage with an increased rate of chromosomal rearrangements as a whole.
- MeSH
- fylogeneze MeSH
- genom MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- malování chromozomů metody MeSH
- mapování chromozomů MeSH
- metafáze MeSH
- molekulární evoluce MeSH
- plazi genetika MeSH
- ptáci genetika MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Xenopus represents important model organisms in the field of developmental biology and chromosomal evolution. Developmental processes are tightly coupled with the analysis of gene function via genetic linkage and mapping. Cytogenetic techniques such as chromosome banding or FISH are essential tools for the determination of gene position and subsequently for the construction of linkage and physical maps. Here, we present a summary of key achievements in X. tropicalis and X. laevis cytogenetics with emphasis on the gene localization to chromosomes. The second part of this review is focused on the chromosomal evolution regarding both above-mentioned species. With respect to methodology, hybridization techniques such as FISH and chromosome-specific painting FISH are highlighted.
- MeSH
- chromozomy genetika ultrastruktura MeSH
- diploidie MeSH
- druhová specificita MeSH
- genetické markery MeSH
- genom MeSH
- malování chromozomů MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- oocyty ultrastruktura MeSH
- polymorfismus genetický MeSH
- syntenie genetika MeSH
- tandemové repetitivní sekvence MeSH
- tetraploidie MeSH
- vznik druhů (genetika) * MeSH
- Xenopus laevis genetika MeSH
- Xenopus klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Genome structure characterization can contribute to a better understanding of processes such as adaptation, speciation, and karyotype evolution, and can provide useful information for refining genome assemblies. We studied the genome of an important North American boreal forest pest, the spruce budworm, Choristoneura fumiferana, through a combination of molecular cytogenetic analyses and construction of a high-density linkage map based on single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Cytogenetic analyses using fluorescence in situ hybridization methods confirmed the haploid chromosome number of n = 30 in both sexes of C. fumiferana and showed, for the first time, that this species has a WZ/ZZ sex chromosome system. Synteny analysis based on a comparison of the Bombyx mori genome and the C. fumiferana linkage map revealed the presence of a neo-Z chromosome in the latter species, as previously reported for other tortricid moths. In this neo-Z chromosome, we detected an ABC transporter C2 (ABCC2) gene that has been associated with insecticide resistance. Sex-linkage of the ABCC2 gene provides a genomic context favorable to selection and rapid spread of resistance against Bacillus thuringiensis serotype kurstaki (Btk), the main insecticide used in Canada to control spruce budworm populations. Ultimately, the linkage map we developed, which comprises 3586 SNP markers distributed over 30 linkage groups for a total length of 1720.41 cM, will be a valuable tool for refining our draft assembly of the spruce budworm genome.
- MeSH
- chromozomy hmyzu genetika MeSH
- genetická vazba * MeSH
- genom hmyzu * MeSH
- hmyzí proteiny genetika MeSH
- jednonukleotidový polymorfismus MeSH
- Lepidoptera genetika MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům genetika MeSH
- rezistence k insekticidům MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH