In this study, we addressed differences in the development of gut microbiota in 4 successive batches of commercially hatched broiler parent chickens. When planning this study, we expected to find a batch with compromised performance which would allow identification of microbiota of suboptimal composition. Microbiota composition was determined only by sequencing the V3/V4 region of 16S rRNA genes in samples collected from chickens 5 to 18 wk of age. In a total, 100 and 160 samples originating from the ileum or cecum were processed, respectively. In one of the flocks with suboptimal performance we identified an increased abundance of Helicobacter brantae forming over 80% of ileal microbiota in individual chickens. Moreover, we also tested samples of 53-wk-old hens from the same genetic line in which egg production decreased. In this case, cecal microbiota was enriched for Fusobacterium mortiferum forming over 30% of total cecal microbiota. Although none of the identified unusual microbiota members have been well recognized as pathogenic, they may represent new opportunistic pathogens of chickens worth of further investigation. Analysis of gut microbiota composition by next generation sequencing thus proved as a useful and unbiased alternative to bacterial culture, especially in the cases of unspecific symptoms like decrease in flock performance.
- MeSH
- Bacteria klasifikace izolace a purifikace MeSH
- bakteriální RNA analýza MeSH
- cékum mikrobiologie MeSH
- Fusobacterium izolace a purifikace MeSH
- Helicobacter izolace a purifikace MeSH
- ileum mikrobiologie MeSH
- kur domácí mikrobiologie MeSH
- RNA ribozomální 16S analýza MeSH
- sekvenční analýza RNA veterinární MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Events occurring in the chicken caecum following Salmonella Enteritidis infection are relatively well-described. However, mechanisms of the immune response and defence beyond the intestinal tract are less well-described. In this study, we therefore determined changes in protein abundance in the liver and blood serum in response to S. Enteritidis infection using the unbiased approach of shotgun proteomics. Complement and coagulation cascades, TNF signalling, antigen processing and presentation was activated in the liver following infection with S. Enteritidis. Chicken proteins that decreased in the liver were involved in glycolysis, the citrate cycle, oxidative phosphorylation and fatty acid metabolism. No functional category was significantly activated or suppressed in the serum. Concerning individual proteins, VNN1, SAA, AVD, SERPINA3, SERPINB10, AGT, MRP126 or CP increased in abundance both in the liver and serum. MT4, MT3, PTGDS, GLRX and TGM4, though highly inducible in the liver, did not increase in the serum. PIGR, SERPINF2 and IGJ increased in the serum but not in the liver. SERPINA4, apoAIV, CLEC3B, SERPINF1, HRG, AHSG and ALB decreased both in the liver and serum. Avidin-like LOC431660, THRSP, GATM, GGACT, ACOX1, ALDOB or FABP7 decreased in the liver but not in the serum. Finally, CKM, CKB, PLTP, COMP, IGFALS, AMY1A or SERPIND1 decreased in the serum after S. Enteritidis infection but not in the liver. Differently abundant proteins characterise the chicken's response to infection and can be also used as markers of chicken health status.
- MeSH
- cékum imunologie MeSH
- játra imunologie metabolismus mikrobiologie MeSH
- kur domácí krev imunologie MeSH
- nemoci drůbeže imunologie mikrobiologie MeSH
- prezentace antigenu MeSH
- proteiny akutní fáze analýza MeSH
- proteomika * MeSH
- Salmonella enteritidis MeSH
- salmonelová infekce u zvířat krev imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The colonization of poultry with different Salmonella enterica serovars poses an issue throughout the world. In this study we therefore tested the efficacy of a vaccine consisting of attenuated strains of Salmonella enterica serovars Enteritidis, Typhimurium and Infantis against challenge with the same serovars and with S. Agona, Dublin and Hadar. We tested oral and aerosol administration of the vaccine, with or without co-administration of cecal microbiota from adult hens. The protective effect was determined by bacterial counts of the challenge strains up to week 18 of life and by characterizing the immune response using real-time PCR specific for 16 different genes. We have shown that a vaccine consisting of attenuated S. Enteritidis, S. Typhimurium and S. Infantis protected chickens against challenge with the wild type strains of the same serovars and partially protected chickens also against challenge with isolates belonging to serovars Dublin or Hadar. Aerosol vaccination was more effective at inducing systemic immunity whilst oral vaccination stimulated a local immune response in the gut. Co-administration of cecal microbiota increased the protectiveness in the intestinal tract but slightly decreased the systemic immune response. Adjusting the vaccine composition and changing the administration route therefore affects vaccine efficacy.
- MeSH
- atenuované vakcíny terapeutické užití MeSH
- kombinované vakcíny terapeutické užití MeSH
- kur domácí imunologie mikrobiologie MeSH
- nemoci drůbeže imunologie prevence a kontrola MeSH
- Salmonella enteritidis imunologie MeSH
- Salmonella typhimurium imunologie MeSH
- Salmonella imunologie MeSH
- salmonelová infekce u zvířat imunologie mikrobiologie prevence a kontrola MeSH
- salmonelové vakcíny imunologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established.
Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitoring the transcription of 36 genes related to immune response. All the mutants and the wild type strain induced inflammatory signaling in the HD11 cell line though the response to SPI1 mutant infection was different from the rest of the mutants. When newly hatched chickens were inoculated, the phoP as well as the SPI1 mutant did not induce an expression of any of the tested genes in the cecum. Despite this, such chickens were protected against challenge with wild-type S. Enteritidis. On the other hand, inoculation of chickens with the aroA or SPI2 mutant induced expression of 27 and 18 genes, respectively, including genes encoding immunoglobulins. Challenge of chickens inoculated with these two mutants resulted in repeated induction of 11 and 13 tested genes, respectively, including the genes encoding immunoglobulins. In conclusion, SPI1 and phoP mutants induced protective immunity without inducing an inflammatory response and antibody production. Inoculation of chickens with the SPI2 and aroA mutants also led to protective immunity but was associated with inflammation and antibody production. The differences in interaction between the mutants and chicken host can be used for a more detailed understanding of the chicken immune system.
- MeSH
- atenuované vakcíny imunologie MeSH
- buněčné linie MeSH
- cékum imunologie mikrobiologie MeSH
- kur domácí MeSH
- makrofágy imunologie MeSH
- mutace MeSH
- nemoci drůbeže imunologie mikrobiologie MeSH
- Salmonella enteritidis * genetika imunologie MeSH
- salmonelová infekce u zvířat imunologie mikrobiologie MeSH
- salmonelové vakcíny imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
After a ban on the use of antibiotics as growth promoters in farm animals in the European Union in 2006, an interest in alternative products with antibacterial or anti-inflammatory properties has increased. In this study, we therefore tested the effects of extracts from Curcuma longa and Scutellaria baicalensis used as feed additives against cecal inflammation induced by heat stress or Salmonella Enteritidis (S. Enteritidis) infection in chickens. Curcuma extract alone was not enough to decrease gut inflammation induced by heat stress. However, a mixture of Curcuma and Scutellaria extracts used as feed additives decreased gut inflammation induced by heat or S. Enteritidis, decreased S. Enteritidis counts in the cecum but was of no negative effect on BW or humoral immune response. Using next-generation sequencing of 16S rRNA we found out that supplementation of feed with the 2 plant extracts had no effect on microbiota diversity. However, if the plant extract supplementation was provided to the chickens infected with S. Enteritidis, Faecalibacterium, and Lactobacillus, both bacterial genera with known positive effects on gut health were positively selected. The supplementation of chicken feed with extracts from Curcuma and Scutelleria thus may be used in poultry production to effectively decrease gut inflammation and increase chicken performance.
- MeSH
- antibakteriální látky aplikace a dávkování farmakologie MeSH
- antiflogistika aplikace a dávkování farmakologie MeSH
- Curcuma chemie MeSH
- dieta veterinární MeSH
- krmivo pro zvířata analýza MeSH
- kur domácí * MeSH
- mikrobiota účinky léků MeSH
- nemoci drůbeže farmakoterapie imunologie mikrobiologie MeSH
- potravní doplňky analýza MeSH
- RNA ribozomální 16S genetika metabolismus MeSH
- rostlinné extrakty aplikace a dávkování farmakologie MeSH
- Salmonella enteritidis účinky léků fyziologie MeSH
- salmonelová infekce u zvířat farmakoterapie mikrobiologie MeSH
- šišák chemie MeSH
- zánět farmakoterapie veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study we characterised the development of caecal microbiota in egg laying hens over their commercial production lifespan, from the day of hatching until 60 weeks of age. Using pyrosequencing of V3/V4 variable regions of 16S rRNA genes for microbiota characterisation, we were able to define 4 different stages of caecal microbiota development. The first stage lasted for the first week of life and was characterised by a high prevalence of Enterobacteriaceae (phylum Proteobacteria). The second stage lasted from week 2 to week 4 and was characterised by nearly an absolute dominance of Lachnospiraceae and Ruminococcaceae (both phylum Firmicutes). The third stage lasted from month 2 to month 6 and was characterised by the succession of Firmicutes at the expense of Bacteroidetes. The fourth stage was typical for adult hens in full egg production aged 7 months or more and was characterised by a constant ratio of Bacteroidetes and Firmicutes formed by equal numbers of the representatives of both phyla.
- MeSH
- cékum mikrobiologie MeSH
- kur domácí růst a vývoj mikrobiologie MeSH
- longitudinální studie MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interaction between pigs and Salmonella enterica serovar Derby (Salmonella Derby) is much less understood in comparison with Salmonella enterica serovar Typhimurium (Salmonella Typhimurium). To study interactions of weaned piglets with Salmonella Derby, we compared the course of infections with Salmonella Derby De1 and Salmonella Typhimurium DT104 strains, both isolated from pig herds with a long history of asymptomatic infection. Salmonella Derby strain used was shed during the 28-day experiment period, while Salmonella Typhimurium strain was not found in faeces after day 17 post-infection. When the piglets were co-infected with both strains, Salmonella Derby was present in faeces until the end of the experiment, whilst Salmonella Typhimurium disappeared after day 21 post-infection. At the end of the experiment, Salmonella Derby was present in more tissues when compared with Salmonella Typhimurium. Piglets infected with Salmonella Typhimurium responded earlier with synthesis of anti-lipopolysaccharide IgM and IgG antibodies and with higher antibody levels compared to piglets infected with Salmonella Derby. Cellular immune response to both strains was very low and was detected later than was the onset of IgG antibody production.
- MeSH
- feces mikrobiologie MeSH
- koinfekce imunologie MeSH
- nemoci prasat imunologie MeSH
- prasata MeSH
- protilátky bakteriální krev MeSH
- Salmonella enterica imunologie izolace a purifikace MeSH
- Salmonella typhimurium imunologie izolace a purifikace MeSH
- salmonelová infekce u zvířat imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Salmonella vaccines used in poultry in the EU are based on attenuated strains of either Salmonella serovar Enteritidis or Typhimurium which results in a decrease in S. Enteritidis and S. Typhimurium but may allow other Salmonella serovars to fill an empty ecological niche. In this study we were therefore interested in the early interactions of chicken immune system with S. Infantis compared to S. Enteritidis and S. Typhimurium, and a role of O-antigen in these interactions. To reach this aim, we orally infected newly hatched chickens with 7 wild type strains of Salmonella serovars Enteritidis, Typhimurium and Infantis as well as with their rfaL mutants and characterized the early Salmonella-chicken interactions. Inflammation was characterized in the cecum 4 days post-infection by measuring expression of 43 different genes. All wild type strains stimulated a greater inflammatory response than any of the rfaL mutants. However, there were large differences in chicken responses to different wild type strains not reflecting their serovar classification. The initial interaction between newly-hatched chickens and Salmonella was found to be dependent on the presence of O-antigen but not on its structure, i.e. not on serovar classification. In addition, we observed that the expression of calbindin or aquaporin 8 in the cecum did not change if inflammatory gene expression remained within a 10 fold fluctuation, indicating the buffering capacity of the cecum, preserving normal gut functions even in the presence of minor inflammatory stimuli.
- MeSH
- akvaporiny metabolismus MeSH
- cékum imunologie metabolismus MeSH
- kalbindiny metabolismus MeSH
- kur domácí imunologie MeSH
- nemoci drůbeže imunologie metabolismus MeSH
- O-antigeny metabolismus MeSH
- přirozená imunita MeSH
- Salmonella enterica imunologie metabolismus MeSH
- salmonelová infekce u zvířat imunologie metabolismus MeSH
- séroskupina MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH