In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.
The advances in electron cryo-microscopy have enabled high-resolution structural studies of vitrified macromolecular complexes in situ by cryo-electron tomography (cryo-ET). Since utilization of cryo-ET is generally limited to the specimens with thickness < 500 nm, a complex sample preparation protocol to study larger samples such as single eukaryotic cells by cryo-ET was developed and optimized over the last decade. The workflow is based on the preparation of a thin cellular lamella by cryo-focused ion beam milling (cryo-FIBM) from the vitrified cells. The sample preparation protocol is a multi-step process which includes utilization of several high-end instruments and comprises sample manipulation prone to sample deterioration. Here, we present a workflow for preparation of three different model specimens that was optimized to provide high-quality lamellae for cryo-ET or electron diffraction tomography with high reproducibility. Preparation of lamellae from large adherent mammalian cells, small suspension eukaryotic cell line, and protein crystals of intermediate size is described which represents examples of the most frequently studied samples used for cryo-FIBM in life sciences.
- MeSH
- buňky ultrastruktura MeSH
- elektronová kryomikroskopie metody MeSH
- ionty MeSH
- makromolekulární látky ultrastruktura MeSH
- molekulární biologie metody MeSH
- odběr biologického vzorku metody MeSH
- proteiny ultrastruktura MeSH
- průběh práce MeSH
- reprodukovatelnost výsledků MeSH
- Saccharomyces cerevisiae ultrastruktura MeSH
- tomografie elektronová metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.
- MeSH
- algoritmy MeSH
- elektronová kryomikroskopie metody MeSH
- makromolekulární látky chemie MeSH
- metoda Monte Carlo MeSH
- počítačové zpracování obrazu metody MeSH
- reprodukovatelnost výsledků MeSH
- ribozomy chemie MeSH
- stochastické procesy * MeSH
- tomografie elektronová metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
Electron tomographic reconstructions suffer from a number of artefacts arising from effects accompanying the processes of acquisition of a set of tilted projections of the specimen in a transmission electron microscope and from its subsequent computational handling. The most pronounced artefacts usually come from imprecise projection alignment, distortion of specimens during tomogram acquisition and from the presence of a region of missing data in the Fourier space, the "missing wedge". The ray artefacts caused by the presence of the missing wedge can be attenuated by the angular image filter, which attenuates the transition between the data and the missing wedge regions. In this work, we present an analysis of the influence of angular filtering on the resolution of averaged repetitive structural motives extracted from three-dimensional reconstructions of tomograms acquired in the single-axis tilting geometry.
The limited specimen tilting range that is typically available in electron tomography gives rise to a region in the Fourier space of the reconstructed object where experimental data are unavailable - the missing wedge. Since this region is sharply delimited from the area of available data, the reconstructed signal is typically hampered by convolution with its impulse response, which gives rise to the well-known missing wedge artefacts in 3D reconstructions. Despite the recent progress in the field of reconstruction and regularization techniques, the missing wedge artefacts remain untreated in most current reconstruction workflows in structural biology. Therefore we have designed a simple Fourier angular filter that effectively suppresses the ray artefacts in the single-axis tilting projection acquisition scheme, making single-axis tomographic reconstructions easier to interpret in particular at low signal-to-noise ratio in acquired projections. The proposed filter can be easily incorporated into current electron tomographic reconstruction schemes.
- MeSH
- artefakty MeSH
- Fourierova analýza MeSH
- krysa rodu rattus MeSH
- líska ultrastruktura MeSH
- mozeček ultrastruktura MeSH
- počítačové zpracování obrazu * MeSH
- poměr signál - šum MeSH
- pyl ultrastruktura MeSH
- tomografie elektronová metody MeSH
- Trypanosoma brucei brucei ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH