Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
- MeSH
- dipeptidy metabolismus MeSH
- glutamátkarboxypeptidasa II * genetika metabolismus MeSH
- kyselina glutamová MeSH
- lipidomika * MeSH
- lipidy chemie MeSH
- metabolomika * MeSH
- mozek metabolismus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors arising from chromaffin cells of adrenal medulla or sympathetic or parasympathetic paraganglia, respectively. To identify new therapeutic targets, we performed a detailed membrane-focused proteomic analysis of five human paraganglioma (PGL) samples. Using the Pitchfork strategy, which combines specific enrichments of glycopeptides, hydrophobic transmembrane segments, and non-glycosylated extra-membrane peptides, we identified over 1800 integral membrane proteins (IMPs). We found 45 "tumor enriched" proteins, i.e., proteins identified in all five PGLs but not found in control chromaffin tissue. Among them, 18 IMPs were predicted to be localized on the cell surface, a preferred drug targeting site, including prostate-specific membrane antigen (PSMA), a well-established target for nuclear imaging and therapy of advanced prostate cancer. Using specific antibodies, we verified PSMA expression in 22 well-characterized human PPGL samples. Compared to control chromaffin tissue, PSMA was markedly overexpressed in high-risk PPGLs belonging to the established Cluster 1, which is characterized by worse clinical outcomes, pseudohypoxia, multiplicity, recurrence, and metastasis, specifically including SDHB, VHL, and EPAS1 mutations. Using immunohistochemistry, we localized PSMA expression to tumor vasculature. Our study provides the first direct evidence of PSMA overexpression in PPGLs which could translate to therapeutic and diagnostic applications of anti-PSMA radio-conjugates in high-risk PPGLs.
- MeSH
- antigeny povrchové genetika MeSH
- feochromocytom diagnóza genetika MeSH
- glutamátkarboxypeptidasa II genetika MeSH
- lidé MeSH
- nádory nadledvin diagnóza genetika MeSH
- paragangliom diagnóza genetika MeSH
- proteom genetika MeSH
- teranostická nanomedicína MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is an important diagnostic and therapeutic target in prostate cancer. PSMA/GCPII is also expressed in many healthy tissues, but its function has only been established in the brain and small intestine. Several research groups have attempted to produce PSMA/GCPII-deficient mice to study the physiological role of PSMA/GCPII in detail. The outcomes of these studies differ dramatically, ranging from embryonic lethality to production of viable PSMA/GCPII-deficient mice without any obvious phenotype. METHODS: We produced PSMA/GCPII-deficient mice (hereafter also referred as Folh1-/- mice) by TALEN-mediated mutagenesis on a C57BL/6NCrl background. Using Western blot and an enzyme activity assay, we confirmed the absence of PSMA/GCPII in our Folh1-/- mice. We performed anatomical and histopathological examination of selected tissues with a focus on urogenital system. We also examined the PSMA/GCPII expression profile within the mouse urogenital system using an enzyme activity assay and confirmed the presence of PSMA/GCPII in selected tissues by immunohistochemistry. RESULTS: Our Folh1-/- mice are viable, breed normally, and do not show any obvious phenotype. Nevertheless, aged Folh1-/- mice of 69-72 weeks exhibit seminal vesicle dilation, which is caused by accumulation of luminal fluid. This phenotype was also observed in Folh1+/- mice; the overall difference between our three cohorts (Folh1-/- , Folh1+/- , and Folh1+/+ ) was highly significant (P < 0.002). Of all studied tissues of the mouse urogenital system, only the epididymis appeared to have a physiologically relevant level of PSMA/GCPII expression. Additional experiments demonstrated that PSMA/GCPII is also present in the human epididymis. CONCLUSIONS: In this study, we provide the first evidence characterizing the reproductive tissue phenotype of PSMA/GCPII-deficient mice. These findings will help lay the groundwork for future studies to reveal PSMA/GCPII function in human reproduction.
- MeSH
- antigeny povrchové genetika metabolismus MeSH
- glutamátkarboxypeptidasa II nedostatek genetika metabolismus MeSH
- imunohistochemie MeSH
- lidé MeSH
- membránové glykoproteiny nedostatek genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- semenné váčky enzymologie patologie MeSH
- stárnutí metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Calcium ions are required for proper function of a wide spectrum of proteins within cells. X-ray crystallography of human glutamate carboxypeptidase II (GCPII) revealed the presence of a Ca2+ -binding site, but its importance for the structure and function of this metallopeptidase has not been elucidated to date. Here, we prepared a panel of mutants targeting residues that form the Ca2+ coordination sphere of GCPII and analyzed their structural and enzymatic properties using an array of complementary biophysical and biochemical approaches. Our data unequivocally show that even a slight disruption of the Ca2+ -binding site destabilizes the three-dimensional fold of GCPII and is associated with impaired secretion, a high propensity to form nonphysiological oligomers, and an inability to bind active site-targeted ligands. Additionally, the Ca2+ -binding site is critical for maintenance of the native homodimeric quaternary arrangement of GCPII, which is indispensable for its enzymatic activity. Overall, our results offer a clear picture of the importance of Ca2+ for the structural integrity and hydrolytic activity of human GCPII and by extension homologous members of the M28 zinc-dependent metallopeptidase family.
- MeSH
- dimerizace MeSH
- glutamátkarboxypeptidasa II chemie genetika metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- stabilita proteinů MeSH
- teplota * MeSH
- vápník chemie metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Nowadays, on-a-chip capillary electrophoresis is a routine method for the detection of PCR fragments. The Agilent 2100 Bioanalyzer was one of the first commercial devices in this field. Our project was designed to study the characteristics of Agilent DNA 1000 kit in PCR fragment analysis as a part of circulating tumour cell (CTC) detection technique. Despite the common use of this kit a complex analysis of the results from a long-term project is still missing. MATERIALS AND METHODS: A commercially available Agilent DNA 1000 kit was used as a final step in the CTC detection (AdnaTest) for the determination of the presence of PCR fragments generated by Multiplex PCR. Data from 30 prostate cancer patients obtained during two years of research were analyzed to determine the trueness and precision of the PCR fragment size determination. Additional experiments were performed to demonstrate the precision (repeatability, reproducibility) and robustness of PCR fragment concentration determination. RESULTS: The trueness and precision of the size determination was below 3% and 2% respectively. The repeatability of the concentration determination was below 15%. The difference in concentration determination increases when Multiplex-PCR/storage step is added between the two measurements of one sample. CONCLUSIONS: The characteristics established in our study are in concordance with the manufacturer's specifications established for a ladder as a sample. However, the concentration determination may vary depending on chip preparation, sample storage and concentration. The 15% variation of concentration determination repeatability was shown to be partly proportional and can be suppressed by proper normalization.
- MeSH
- aktiny genetika MeSH
- antigeny povrchové genetika MeSH
- DNA nádorová genetika MeSH
- erbB receptory genetika MeSH
- glutamátkarboxypeptidasa II genetika MeSH
- laboratoř na čipu * MeSH
- lidé MeSH
- multiplexová polymerázová řetězová reakce metody MeSH
- nádorové biomarkery genetika MeSH
- nádorové cirkulující buňky metabolismus MeSH
- nádory prostaty rezistentní na kastraci krev genetika MeSH
- prostatický specifický antigen genetika MeSH
- reagenční diagnostické soupravy MeSH
- regulace genové exprese u nádorů * MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.
- MeSH
- angiogenní proteiny metabolismus MeSH
- antigeny CD29 metabolismus MeSH
- antigeny povrchové genetika metabolismus MeSH
- buněčná adheze MeSH
- dipeptidy metabolismus MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endoteliální buňky cytologie metabolismus MeSH
- fyziologická neovaskularizace MeSH
- glutamátkarboxypeptidasa II genetika metabolismus MeSH
- hydrolýza MeSH
- laminin metabolismus MeSH
- lidé MeSH
- mutantní proteiny genetika metabolismus MeSH
- peptidové fragmenty metabolismus MeSH
- proteolýza MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
N-acetylated α-linked acidic dipeptidase-like protein (NAALADase L), encoded by the NAALADL1 gene, is a close homolog of glutamate carboxypeptidase II, a metallopeptidase that has been intensively studied as a target for imaging and therapy of solid malignancies and neuropathologies. However, neither the physiological functions nor structural features of NAALADase L are known at present. Here, we report a thorough characterization of the protein product of the human NAALADL1 gene, including heterologous overexpression and purification, structural and biochemical characterization, and analysis of its expression profile. By solving the NAALADase L x-ray structure, we provide the first experimental evidence that it is a zinc-dependent metallopeptidase with a catalytic mechanism similar to that of glutamate carboxypeptidase II yet distinct substrate specificity. A proteome-based assay revealed that the NAALADL1 gene product possesses previously unrecognized aminopeptidase activity but no carboxy- or endopeptidase activity. These findings were corroborated by site-directed mutagenesis and identification of bestatin as a potent inhibitor of the enzyme. Analysis of NAALADL1 gene expression at both the mRNA and protein levels revealed the small intestine as the major site of protein expression and points toward extensive alternative splicing of the NAALADL1 gene transcript. Taken together, our data imply that the NAALADL1 gene product's primary physiological function is associated with the final stages of protein/peptide digestion and absorption in the human digestive system. Based on these results, we suggest a new name for this enzyme: human ileal aminopeptidase (HILAP).
- MeSH
- dipeptidylpeptidasa 4 metabolismus MeSH
- endopeptidasy metabolismus MeSH
- glutamátkarboxypeptidasa II chemie genetika metabolismus MeSH
- krysa rodu rattus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- regulace genové exprese enzymů MeSH
- sekvence aminokyselin MeSH
- střeva enzymologie MeSH
- terciární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
In addition to its well-characterized role in the central nervous system, human glutamate carboxypeptidase II (GCPII; Uniprot ID Q04609) acts as a folate hydrolase in the small intestine, participating in the absorption of dietary polyglutamylated folates (folyl-n-γ-l-glutamic acid), which are the provitamin form of folic acid (also known as vitamin B9 ). Despite the role of GCPII as a folate hydrolase, nothing is known about the processing of polyglutamylated folates by GCPII at the structural or enzymological level. Moreover, many epidemiologic studies on the relationship of the naturally occurring His475Tyr polymorphism to folic acid status suggest that this polymorphism may be associated with several pathologies linked to impaired folate metabolism. In the present study, we report: (a) a series X-ray structures of complexes between a catalytically inactive GCPII mutant (Glu424Ala) and a panel of naturally occurring polyglutamylated folates; (b) the X-ray structure of the His475Tyr variant at a resolution of 1.83 Å; (c) the study of the recently identified arene-binding site of GCPII through mutagenesis (Arg463Leu, Arg511Leu and Trp541Ala), inhibitor binding and enzyme kinetics with polyglutamylated folates as substrates; and (d) a comparison of the thermal stabilities and folate-hydrolyzing activities of GCPII wild-type and His475Tyr variants. As a result, the crystallographic data reveal considerable details about the binding mode of polyglutamylated folates to GCPII, especially the engagement of the arene binding site in recognizing the folic acid moiety. Additionally, the combined structural and kinetic data suggest that GCPII wild-type and His475Tyr variant are functionally identical.
- MeSH
- antigeny povrchové chemie genetika MeSH
- glutamátkarboxypeptidasa II chemie genetika MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- kyselina polyglutamová chemie metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- polymorfismus genetický MeSH
- stabilita enzymů MeSH
- vazebná místa genetika MeSH
- vysoká teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), is an established prostate cancer marker and is considered a promising target for specific anticancer drug delivery. Low-molecular-weight inhibitors of GCPII are advantageous specific ligands for this purpose. However, they must be modified with a linker to enable connection of the ligand with an imaging molecule, anticancer drug, and/or nanocarrier. Here, we describe a structure-activity relationship (SAR) study of GCPII inhibitors with linkers suitable for imaging and drug delivery. Structure-assisted inhibitor design and targeting of a specific GCPII exosite resulted in a 7-fold improvement in Ki value compared to the parent structure. X-ray structural analysis of the inhibitor series led to the identification of several inhibitor binding modes. We also optimized the length of the inhibitor linker for effective attachment to a biotin-binding molecule and showed that the optimized inhibitor could be used to target nanoparticles to cells expressing GCPII.
- MeSH
- glutamátkarboxypeptidasa II antagonisté a inhibitory genetika metabolismus MeSH
- inhibitory proteas chemická syntéza chemie toxicita MeSH
- katalytická doména MeSH
- kinetika MeSH
- lidé MeSH
- močovina analogy a deriváty chemická syntéza toxicita MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- nosiče léků chemie MeSH
- povrchová plasmonová rezonance MeSH
- racionální návrh léčiv MeSH
- regulace genové exprese účinky léků MeSH
- rekombinantní proteiny biosyntéza chemie genetika MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The accumulation of amyloid-β (Aβ) peptide is thought to be a major causative mechanism of Alzheimer's disease. Aβ accumulation could be caused by dysregulated processing of amyloid precursor protein, yielding excessive amounts of Aβ, and/or by inefficient proteolytic degradation of the peptide itself. Several proteases have been described as Aβ degradation enzymes, most notably metalloendopeptidases, aspartic endopeptidases, and some exopeptidases. Recently a report suggested that another metallopeptidase, glutamate carboxypeptidase II (GCPII), can also cleave Aβ. GCPII is a zinc exopeptidase that cleaves glutamate from N-acetyl-L-aspartyl-L-glutamate in the central nervous system and from pteroylpoly-γ-glutamate in the jejunum. GCPII has been proposed as a promising therapeutic target for disorders caused by glutamate neurotoxicity. However, an Aβ-degrading activity of GCPII would compromise potential pharmaceutical use of GCPII inhibitors, because the enzyme inhibition might lead to increased Aβ levels and consequently to Alzheimer's disease. Therefore, we analyzed the reported Aβ-degrading activity of GCPII using highly purified recombinant enzyme and synthetic Aβ. We did not detect any Aβ degradation activity of GCPII or its homologue even under prolonged incubation at a high enzyme to substrate ratio. These results are in good agreement with the current detailed structural understanding of the substrate specificity and enzyme-ligand interactions of GCPII.
- MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- antigeny povrchové genetika metabolismus MeSH
- biokatalýza účinky léků MeSH
- dipeptidy metabolismus MeSH
- glutamátkarboxypeptidasa II antagonisté a inhibitory genetika metabolismus MeSH
- hmotnostní spektrometrie MeSH
- hydrolýza MeSH
- katalytická doména MeSH
- lidé MeSH
- molekulární struktura MeSH
- neprilysin genetika metabolismus MeSH
- organofosforové sloučeniny farmakologie MeSH
- peptidové fragmenty chemie metabolismus MeSH
- proteolýza MeSH
- rekombinantní proteiny metabolismus MeSH
- substrátová specifita MeSH
- tritium MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH