protein domains
Dotaz
Zobrazit nápovědu
Domains are distinct units within proteins that typically can fold independently into recognizable three-dimensional structures to facilitate their functions. The structural and functional independence of protein domains is reflected by their apparent modularity in the context of multi-domain proteins. In this work, we examined the coupling of evolution of domain sequences co-occurring within multi-domain proteins to see if it proceeds independently, or in a coordinated manner. We used continuous information theory measures to assess the extent of correlated mutations among domains in multi-domain proteins from organisms across the tree of life. In all multi-domain architectures we examined, domains co-occurring within protein sequences had to some degree undergone concerted evolution. This finding challenges the notion of complete modularity and independence of protein domains, providing new perspective on the evolution of protein sequence and function.
Genetic variation occurring within conserved functional protein domains warrants special attention when examining DNA variation in the context of disease causation. Here we introduce a resource, freely available at www.prot2hg.com, that addresses the question of whether a particular variant falls onto an annotated protein domain and directly translates chromosomal coordinates onto protein residues. The tool can perform a multiple-site query in a simple way, and the whole dataset is available for download as well as incorporated into our own accessible pipeline. To create this resource, National Center for Biotechnology Information protein data were retrieved using the Entrez Programming Utilities. After processing all human protein domains, residue positions were reverse translated and mapped to the reference genome hg19 and stored in a MySQL database. In total, 760 487 protein domains from 42 371 protein models were mapped to hg19 coordinates and made publicly available for search or download (www.prot2hg.com). In addition, this annotation was implemented into the genomics research platform GENESIS in order to query nearly 8000 exomes and genomes of families with rare Mendelian disorders (tgp-foundation.org). When applied to patient genetic data, we found that rare (<1%) variants in the Genome Aggregation Database were significantly more annotated onto a protein domain in comparison to common (>1%) variants. Similarly, variants described as pathogenic or likely pathogenic in ClinVar were more likely to be annotated onto a domain. In addition, we tested a dataset consisting of 60 causal variants in a cohort of patients with epileptic encephalopathy and found that 71% of them (43 variants) were propagated onto protein domains. In summary, we developed a resource that annotates variants in the coding part of the genome onto conserved protein domains in order to increase variant prioritization efficiency.Database URL: www.prot2hg.com.
- MeSH
- anotace sekvence metody MeSH
- data mining metody MeSH
- databáze genetické * MeSH
- datové kurátorství metody MeSH
- genetická variace * MeSH
- genom lidský genetika MeSH
- genomika metody MeSH
- internet MeSH
- lidé MeSH
- proteinové domény genetika MeSH
- proteiny chemie genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Proteins are naturally formed by domains edging their functional and structural properties. A domain out of the context of an entire protein can retain its structure and to some extent also function on its own. These properties rationalize construction of artificial fusion multidomain proteins with unique combination of various functions. Information on the specific functional and structural characteristics of individual domains in the context of new artificial fusion proteins is inevitably encoded in sequential order of composing domains defining their mutual spatial positions. So the challenges in designing new proteins with new domain combinations lie dominantly in structure/function prediction and its context dependency. Despite the enormous body of publications on artificial fusion proteins, the task of their structure/function prediction is complex and nontrivial. The degree of spatial freedom facilitated by a linker between domains and their mutual orientation driven by noncovalent interactions is beyond a simple and straightforward methodology to predict their structure with reasonable accuracy. In the presented manuscript, we tested methodology using available modeling tools and computational methods. We show that the process and methodology of such prediction are not straightforward and must be done with care even when recently introduced AlphaFold II is used. We also addressed a question of benchmarking standards for prediction of multidomain protein structures-x-ray or Nuclear Magnetic Resonance experiments. On the study of six two-domain protein chimeras as well as their composing domains and their x-ray structures selected from PDB, we conclude that the major obstacle for justified prediction is inappropriate sampling of the conformational space by the explored methods. On the other hands, we can still address particular steps of the methodology and improve the process of chimera proteins prediction.
This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships.
- MeSH
- katalytická doména MeSH
- lidé MeSH
- proteiny chemie MeSH
- sekundární struktura proteinů * MeSH
- sekvenční seřazení MeSH
- terciární struktura proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
CAS is a docking protein, which was shown to act as a mechanosensor in focal adhesions. The unique assembly of structural domains in CAS is important for its function as a mechanosensor. The tension within focal adhesions is transmitted to a stretchable substrate domain of CAS by focal adhesion-targeting of SH3 and CCH domain of CAS, which anchor the CAS protein in focal adhesions. Mechanistic models of the stretching biosensor propose equal roles for both anchoring domains. Using deletion mutants and domain replacements, we have analyzed the relative importance of the focal adhesion anchoring domains on CAS localization and dynamics in focal adhesions as well as on CAS-mediated mechanotransduction. We confirmed the predicted prerequisite of the focal adhesion targeting for CAS-dependent mechanosensing and unraveled the critical importance of CAS SH3 domain in mechanosensing. We further show that CAS localizes to the force transduction layer of focal adhesions and that mechanical stress stabilizes CAS in focal adhesions.
- MeSH
- buněčná adheze MeSH
- buněčný převod mechanických signálů * MeSH
- fibroblasty cytologie metabolismus MeSH
- fokální adheze metabolismus MeSH
- mechanický stres MeSH
- mutantní proteiny chemie MeSH
- myši MeSH
- proteinové domény MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- signální transdukce MeSH
- stabilita proteinů MeSH
- substrátový protein asociovaný s Crk chemie metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.
- MeSH
- aminokyselinové motivy MeSH
- histonlysin-N-methyltransferasa chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie metabolismus MeSH
- NF-kappa B chemie metabolismus MeSH
- protein vázající CREB chemie metabolismus MeSH
- protoonkogenní protein MLL chemie metabolismus MeSH
- transkripční faktory bHLH chemie metabolismus MeSH
- transkripční faktory chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres are nucleoprotein structures ensuring the stability of eukaryotic chromosome ends. Two protein families, TRFL (TFL-Like) and SMH (Single-Myb-Histone), containing a specific telobox motif in their Myb domain, have been identified as potential candidates involved in a functional nucleoprotein structure analogous to human "shelterin" at plant telomeres. We analyze the DNA-protein interaction of the full-length and truncated variants of AtTRB1, a SMH-family member with a typical structure: N-terminal Myb domain, central H1/5 domain and C-terminal coiled-coil. We show that preferential interaction of AtTRB1 with double-stranded telomeric DNA is mediated by the Myb domain, while the H1/5 domain is involved in non-specific DNA-protein interaction and in the multimerization of AtTRB1.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- DNA rostlinná metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- financování organizované MeSH
- histony metabolismus MeSH
- klonování DNA MeSH
- lidé MeSH
- onkogenní proteiny v-myb metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- telomery metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.
- MeSH
- adaptorový protein Grb2 * metabolismus chemie MeSH
- lidé MeSH
- proteinové domény MeSH
- proteiny asociované s mikrotubuly * metabolismus chemie genetika MeSH
- protoonkogenní proteiny c-fyn metabolismus chemie genetika MeSH
- signální transdukce MeSH
- src homologní domény MeSH
- vazba proteinů * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The HMG-box domain of approximately 75 amino acid residues was originally identified as the domain that mediates the DNA-binding of chromatin-associated high-mobility group (HMG) proteins of the HMGB type. In the last few years, HMG-box domains have been found in various DNA-binding proteins including transcription factors and subunits of chromatin-remodeling complexes. HMG-box domains mediate either non-sequence-specific (e.g., HMGB-type proteins) or sequence-specific (e.g., transcription factors) DNA binding. Both types of HMG-box domains bind non-B-type DNA structures (bent, kinked and unwound) with high affinity. In addition, HMG-box domains are involved in a variety of protein-protein interactions. Here, we have examined the human and plant genomes for genes encoding HMG-box domains. Compared to plants, human cells contain a larger variety of HMG-box proteins. Whereas in humans transcription factors are the most divergent group of HMG-box proteins, in plants the chromosomal HMGB-type proteins are most variable.
- MeSH
- DNA vazebné proteiny MeSH
- domény HMG-Box MeSH
- financování organizované MeSH
- genom lidský MeSH
- genom rostlinný MeSH
- jaderné proteiny MeSH
- lidé MeSH
- proteiny Drosophily MeSH
- proteiny HMGB MeSH
- restrukturace chromatinu MeSH
- transkripční faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH