Human induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells (PBMCs) isolated from two related patients diagnosed with either idiopathic ventricular fibrillation or catecholaminergic polymorphic ventricular tachycardia, carrying an unknown variant in the RYR2 gene, c.14201A>G (p.Y4734C) and one healthy related individual. Reprogramming was done using a commercially available Epi5 Reprogramming Kit. The pluripotency of the iPSC lines was verified by the expression of pluripotency markers and by their capacity to differentiate into all three embryonic germ layers in vitro. These iPSC lines are available for functional analysis and in vitro studies of RYR2 channelopathy.
- MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- dospělí MeSH
- fibrilace komor * genetika MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- komorová tachykardie * genetika metabolismus MeSH
- lidé MeSH
- ryanodinový receptor vápníkového kanálu * genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Human induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells (PBMCs) isolated from a patient diagnosed with spontaneous late-onset Alzheimer's disease (AD) carrying ApoE3/3 gene and one age-, sex-, and ApoE-matched healthy control. Reprogramming was done using a commercially available Epi5 Reprogramming Kit containing OCT4, SOX2, KLF4, LIN28, and L-MYC as reprogramming factors. The pluripotency of the iPSC lines was verified by the expression of pluripotency markers and by their capacity to differentiate into all three embryonic germ layers in vitro. These newly established iPSC lines offer a valuable platform for in vitro modeling of AD.
- MeSH
- Alzheimerova nemoc * genetika metabolismus MeSH
- apolipoprotein E3 genetika MeSH
- buněčná diferenciace MeSH
- genotyp MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- Krüppel-like faktor 4 MeSH
- leukocyty mononukleární metabolismus MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a mutation in the HTT gene. To generate human-induced pluripotent stem cells (hiPSCs), we used dermal fibroblasts from 1 healthy adult control (K-Pic2), 1 HD manifest patient (M-T2), 1 healthy juvenile control (jK-N1), and 1 juvenile HD patient (jHD-V1). HD stage of patients was assessed by neurological tests and donors were without comorbidities and were non-smokers. Characterization showed that the obtained hiPSCs have the same number of CAG repeats as the parental fibroblast lines, express pluripotency markers and have the ability to differentiate into all 3 germ layers.
Here, we present newly derived in vitro model for modeling Duchenne muscular dystrophy. Our new cell line was derived by reprogramming of peripheral blood mononuclear cells (isolated from blood from pediatric patient) with Sendai virus encoding Yamanaka factors. Derived iPS cells are capable to differentiate in vitro into three germ layers as verified by immunocytochemistry. When differentiated in special medium, our iPSc formed spontaneously beating cardiomyocytes. As cardiomyopathy is the main clinical complication in patients with Duchenne muscular dystrophy, the cell line bearing the dystrophin gene mutation might be of interest to the research community.
Huntington's disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant heritability that affect the central nervous system and peripheral tissues. The human-induced pluripotent stem cells (hiPSC) lines were generated from dermal fibroblasts of patients without comorbidities, non-smokers, at the pre-manifest (IIMCBi004-A), early-manifest (IIMCBi005-A), and manifest (IIMCBi006-A) HD stage assessed by neurological tests, as well as from a healthy donor (IIMCBi003-A). Characterization showed that the obtained hiPSC lines contained different CAG repeats consistent with the number of CAG repeats in original fibroblasts. Moreover, hiPSCs expressed pluripotency markers and were able to differentiate into three-germ layers in vitro.
- MeSH
- Huntingtonova nemoc * genetika MeSH
- indukované pluripotentní kmenové buňky * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We present here a new iPS cell line for modeling sporadic form of ALS. Cell line was generated by reprogramming skin fibroblasts isolated with explant culture technology from skin biopsy, donated by ALS patient. For reprogramming, polycistronic self-replicating RNA vector was used and derived iPS cells were characterized by immunocytochemistry and FACS (pluripotent factors expression), karyotyping, STR fingerprinting analysis and in vitro differentiation assay. New cell line showed normal (46, XY) karyotype and differentiated in vitro into cells from three germ layers. STR analysis proved the origin and originality of the cell line.
- MeSH
- amyotrofická laterální skleróza * patologie MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- fibroblasty metabolismus MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- technologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human induced pluripotent stem cell (iPSC) lines were generated from primary human fibroblasts isolated from three patients with a familial form of Alzheimer's disease (AD) and three healthy control individuals. Two AD-iPSC lines carry a PSEN1 mutation A246E; the third cell line carries a PSEN2 mutation N141I. The fibroblasts were reprogrammed with Yamanaka factors (OSKM) using a commercially available Epi5 Reprogramming Kit. The pluripotency of iPSCs was confirmed by the expression of pluripotency factors and by their ability to differentiate to all three germ layers in vitro. Newly derived cell lines can be used to model Alzheimer's disease in vitro.
Human induced pluripotent stem cell (iPSC) lines were generated from patients with spontaneous late-onset Alzheimer's disease (AD) and three healthy control individuals. Peripheral blood mononuclear cells were reprogrammed with Yamanaka factors (OSKM) using a commercially available Epi5 Reprogramming Kit. The pluripotency of iPSCs was confirmed by the expression of pluripotency factors and by their ability to differentiate to all three germ layers in vitro. Newly derived cell lines can be used to model Alzheimer's disease in vitro.
The human iPSC cell lines, PLANFiPS1-Sv4F-1 (RCPFi004-A), PLANFiPS2-Sv4F-1 (RCPFi005-A), PLANFiPS3-Sv4F-1 RCPFi006-A), derived from dermal fibroblast from three patients suffering PLAN (PLA2G6-associated neurodegeneration; MIM 256600) caused by mutations in the PLA2G6 gene, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified in vitro. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.
We generated new in vitro model for sporadic form of amyotrophic lateral sclerosis by reprogramming isolated skin fibroblasts into iPSCs. Fibroblasts were reprogrammed with commercially available synthetic polycistronic, self-replicating RNA vector. As verified by FISH, an early passages of a new iPSC line showed mosaic karyotype (cells with normal and abnormal karyotype 46,XY,t(2;14)(q13;p12) were present), while late passages contained only cells with abnormal karyotype. New iPSCs differentiated into all three germ layers and formed a teratoma in nude mice. Our iPSC line represents a new model for therapy testing and drug development in the field of ALS research.
- MeSH
- amyotrofická laterální skleróza * genetika MeSH
- buněčná diferenciace MeSH
- fibroblasty MeSH
- indukované pluripotentní kmenové buňky * MeSH
- myši nahé MeSH
- myši MeSH
- přeprogramování buněk MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH