Reinforcement, the increase of assortative mating driven by selection against unfit hybrids, is conditional on pre-existing divergence. Yet, for ecological divergence to precede the evolution of assortment, strict symmetries between fitnesses in niches must hold, and/or there must be low gene flow between the nascent species. It has thus been argued that conditions favouring sympatric speciation are rarely met in nature. Indeed, we show that under disruptive selection, violating symmetries in niche sizes and increasing strength of the trade-off in selection between the niches quickly leads to loss of genetic variation, instead of evolution of specialists. The region of the parameter space where polymorphism is maintained further narrows with increasing number of loci encoding the diverging trait and the rate of recombination between them. Yet, evolvable assortment and pre-existing assortment both substantially broaden the parameter space within which polymorphism is maintained. Notably, pre-existing niche preference speeds up further increase of assortment, thus facilitating reinforcement in the later phases of speciation. We conclude that in order for sympatric ecological divergence to occur, niche preference must coevolve throughout the divergence process. Even if populations come into secondary contact, having diverged in isolation, niche preference substantially broadens the conditions for coexistence in sympatry and completion of the speciation process. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
- Klíčová slova
- Levene model, epistasis, maintenance of polymorphism, polygenic trait, sympatric speciation, trade-off,
- MeSH
- ekosystém * MeSH
- modely genetické MeSH
- multifaktoriální dědičnost MeSH
- polymorfismus genetický MeSH
- reprodukční izolace * MeSH
- selekce (genetika) MeSH
- sympatrie * MeSH
- tok genů * MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Photosynthetic organisms developed various strategies to mitigate high light stress. For instance, aquatic organisms are able to spend excessive energy by exchanging dissolved CO2 (dCO2) and bicarbonate ( HCO 3 - ) with the environment. Simultaneous uptake and excretion of the two carbon species is referred to as inorganic carbon cycling. Often, inorganic carbon cycling is indicated by displacements of the extracellular dCO2 signal from the equilibrium value after changing the light conditions. In this work, we additionally use (i) the extracellular pH signal, which requires non- or weakly-buffered medium, and (ii) a dynamic model of carbonate chemistry in the aquatic environment to detect and quantitatively describe inorganic carbon cycling. Based on simulations and experiments in precisely controlled photobioreactors, we show that the magnitude of the observed dCO2 displacement crucially depends on extracellular pH level and buffer concentration. Moreover, we find that the dCO2 displacement can also be caused by simultaneous uptake of both dCO2 and HCO 3 - (no inorganic carbon cycling). In a next step, the dynamic model of carbonate chemistry allows for a quantitative assessment of cellular dCO2, HCO 3 - , and H+ exchange rates from the measured dCO2 and pH signals. Limitations of the method are discussed.
- Klíčová slova
- carbonate chemistry, computational modeling, cyanobacteria, futile cycles, photosynthesis,
- Publikační typ
- časopisecké články MeSH