The interaction between pyridines and the π-hole of BeH2 leads to the formation of strong beryllium-bonded complexes. Theoretical investigations demonstrate that the Be-N bonding interaction can effectively regulate the electronic current through a molecular junction. The electronic conductance exhibits distinct switching behavior depending on the substituent groups at the para position of pyridine, highlighting the role of Be-N interaction as a potent chemical gate in the proposed device. The complexes exhibit short intermolecular distances ranging from 1.724 to 1.752 Å, emphasizing their strong binding. Detailed analysis of electronic rearrangements and geometric perturbations upon complex formation provides insights into the underlying reasons for the formation of such strong Be-N bonds, with bond strengths varying from -116.25 to -92.96 kJ/mol. Moreover, the influence of chemical substituents on the local electronic transmission of the beryllium-bonded complex offers valuable insights for the implementation of a secondary chemical gate in single-molecule devices. This study paves the way for the development of chemically gateable, functional single-molecule transistors, advancing the design and fabrication of multifunctional single-molecule devices in the nanoscale regime.
- Keywords
- Beryllium bond, molecular electronics, single-molecule junction, supramolecular chemistry, π-hole,
- Publication type
- Journal Article MeSH
Four cobalt(II) complexes, [Co(L1)2 (NCX)2 (MeOH)2 ] (X=S (1), Se (2)) and {[Co(L2)2 (NCX)2 ]}n (X=S (3), Se (4)) (L1=2,5-dipyridyl-3,4,-ethylenedioxylthiophene and L2=2,5-diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4 O2 octahedral coordination geometry while 3 and 4 have a 2D [4×4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S=3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.
- Keywords
- cobalt, coordination polymers, luminescence, redox-active ligands, single molecule magnets,
- Publication type
- Journal Article MeSH
The study was performed to analyze the impact of seed pretreatment by static magnetic field (SMF) of 200 mT for 1 h on photosynthetic performance of soybean (Glycine max) seedlings under ambient (aUV-B) and supplemental ultraviolet-B (a+sUV-B) stress. Ambient and supplemental UV-B were found to decrease the plant growth, chlorophyll concentration, PSII efficiency, selected JIP-test parameters such as Fv/Fm, φEo, ΔV(I-P), PIABS, PItotal, and rate of photosynthesis in the leaves of soybean seedlings emerged from untreated (UT) seeds. aUV-B and a+sUV-B were observed to increase the synthesis of UV-B-absorbing substances (UAS), reactive oxygen species (ROS) like superoxide radical (O2·-) and hydrogen peroxide (H2O2), antioxidants like ascorbic acid and α-tocopherol and decrease the nitrate reductase (NR) activity; subsequently, it results in a decreased rate of photosynthesis, biomass accumulation, and yield. However, our results provided evidence that SMF pretreatment increased the tolerance of soybean seedlings to UV-B radiation by increased NO content and NR activity; higher efficiency of PSII, higher values of φEo, ΔV(I-P), PIABS, and PItotal, decreased intercellular CO2 concentration, lower amount of UAS, ROS, and antioxidants that consequently improve the yield of soybean plants under aUV-B as well as a+sUV-B stress. Thus, our results suggested that SMF pretreatment mitigates the adverse effects of UV-B stress by the enhancement in photosynthetic performance along with higher NO content which may be able to protect the plants from the deleterious effects of oxidative stress caused by UV-B irradiation.
- Keywords
- Chl fluorescence, Growth, Nitric oxide, PSII efficiency, Photosynthesis, UV-B,
- MeSH
- Chlorophyll MeSH
- Photosynthesis MeSH
- Glycine max * MeSH
- Plant Leaves MeSH
- Magnetic Fields MeSH
- Hydrogen Peroxide * MeSH
- Seedlings MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll MeSH
- Hydrogen Peroxide * MeSH
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
- Keywords
- Agrobacterium, CRISPR/Cas9, genome editing, targeted site modification, transfer-DNA, transgene-free,
- MeSH
- Agrobacterium genetics MeSH
- CRISPR-Cas Systems * MeSH
- Gene Editing methods MeSH
- Genome, Plant * MeSH
- Mutagenesis MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins genetics MeSH
- Plants genetics metabolism MeSH
- Transformation, Genetic MeSH
- Crops, Agricultural genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Plant Proteins MeSH
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
- Keywords
- epithelial–mesenchymal transition, mesenchymal–epithelial transition, metastasis, plasticity, triple-negative breast cancer,
- Publication type
- Journal Article MeSH
- Review MeSH