Biological invasions and human migrations have increased globally due to socio-economic drivers and environmental factors that have enhanced cultural, economic, and geographic connectivity. Both processes involve the movement, establishment, and spread of species, yet unfold within fundamentally different philosophical, social and biological contexts. Hence, studying biological invasions (invasion science) and human migration (migration studies) presents complex parallels that are potentially fruitful to explore. Here, we examined nuanced parallels and differences between these two phenomena, integrating historical, socio-political, and ethical perspectives. Our review underscores the need for context-specific approaches in policymaking and governance to address effectively the challenges and opportunities of human migration and harm from biological invasions. We suggest that approaches to studying the drivers of biological invasions and human migration provide an excellent opportunity for transdisciplinary research; one that acknowledges the complexities and potential insights from both fields of study. Ultimately, integrating natural and social sciences offers a promising avenue for enriching the understanding of invasion biology and migration dynamics while pursuing just, equitable, and sustainable solutions. However, while human migration is a clear driver of biological invasions, drawing on principles from biological invasions to understand past and current human migration risks oversimplification and the potential for harmful generalisations that disregard the intrinsic rights and cultural dynamics of human migrations. By doing so, we provide insights and frameworks to support the development of context-specific policies that respect human dignity, foster cultural diversity, and address migration challenges in ways that promote global cooperation and justice. This interdisciplinary approach highlights the potential for transdisciplinary research that acknowledges complexities in both fields, ultimately enriching our understanding of invasion biology and migration dynamics while pursuing equitable and sustainable solutions.
- Klíčová slova
- biosecurity, cultural assimilation, ecological resilience, ethnocentrism, globalisation, sociopolitical dynamics, transdisciplinary research,
- Publikační typ
- časopisecké články MeSH
Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development are still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS1 (HLS1) and PHYTOCHROME INTERACTING FACTOR4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins, or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima, and PIF4 and HLS1 expression. Analyses of plants expressing a Förster resonance energy transfer-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signaling module to control differential cell elongation during hook formation.
- MeSH
- Arabidopsis * genetika růst a vývoj metabolismus MeSH
- benzamidy MeSH
- buněčná stěna * metabolismus MeSH
- gibereliny metabolismus MeSH
- hypokotyl růst a vývoj genetika metabolismus MeSH
- kyseliny indoloctové * metabolismus MeSH
- mutace genetika MeSH
- pektiny metabolismus MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- regulace genové exprese u rostlin * MeSH
- semenáček * genetika růst a vývoj metabolismus MeSH
- transkripční faktory bHLH * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzamidy MeSH
- gibereliny MeSH
- isoxaben MeSH Prohlížeč
- kyseliny indoloctové * MeSH
- pektiny MeSH
- PIF4 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku * MeSH
- transkripční faktory bHLH * MeSH
Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.
- Klíčová slova
- Europe, freshwater macroinvertebrates, long‐term trends, non‐native species, population spread, population‐level dynamics, risk assessments,
- MeSH
- bezobratlí * fyziologie MeSH
- ekosystém MeSH
- populační dynamika * MeSH
- sladká voda MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
In plant ecology, the terms growth and development are often used interchangeably. Yet these constitute two distinct processes. Plant architectural traits (e.g. number of successive forks) can estimate development stages. Here, we show the importance of including the effect of development stages to better understand size-related trait scaling relationships (i.e. between height and stem diameter). We focused on one common savanna woody species (Senegalia nigrescens) from the Greater Kruger Area, South Africa. We sampled 406 individuals that experience different exposure to herbivory, from which we collected four traits: plant height, basal stem diameter, number of successive forks (proxy for development stage), and resprouting. We analysed trait relationships (using standardized major axis regression) between height and stem diameter, accounting for the effect of ontogeny, exposure to herbivory, and resprouting. The number of successive forks affects the scaling relationship between height and stem diameter, with the slope and strength of the relationship declining in more developed individuals. Herbivory exposure and resprouting do not affect the overall height-diameter relationship. However, when height and stem diameter were regressed separately against number of successive forks, herbivory exposure and resprouting had an effect. For example, resprouting individuals allocate more biomass to both primary and secondary growth than non-resprouting plants in more disturbed conditions. We stress the need to include traits related to ontogeny so as to disentangle the effect of biomass allocation to primary and secondary growth from that of development in plant functional relationships.
- Klíčová slova
- Senegalia nigrescens, allometry, forks, ontogeny, plant architecture, reiteration, savanna,
- MeSH
- biomasa MeSH
- dřevo MeSH
- ekologie MeSH
- Fabaceae * MeSH
- lidé MeSH
- rostliny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.
- Klíčová slova
- albedo, biodiversity change, climate change, climate-surface models, greenhouse gases, land use change, leaf economics spectrum, nature-based solutions, transpiration,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- klimatické procesy MeSH
- pastviny * MeSH
- podnebí MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
The utilization of CO2 as building block for the production of cyclic carbonate is a promising route to simultaneously mitigate the global warming issue and obtain valuable commercial chemicals. In this work, the activity of nicotinamidium halide catalysts towards the CO2 conversion into cyclic carbonate has been explored by means of density functional theory (DFT) calculations. DFT calculations support the ability, suggested experimentally, of the pyridium α-C-H proton of the catalysts to activate the epoxide ring via a hydrogen bond. Interestingly, DFT calculations underline the involvement of the n-octyl substituent of the pyridyl ring in the epoxide activation, while the hydrogen atom of the amide group N-H is rather involved in the stabilization of the iodide trough electrostatic interactions. Moreover, the replacement of the pyridium α-C-H proton with the bulkier methyl group leads to a different reaction mechanism. The calculated energy barriers well reproduce the experimental trends of the studied catalysts, and the computed activation barrier of 29.0 kcal/mol, relative to the ring opening step of the most active catalyst, is in line with the experimental working temperature of 80 °C. Those results shed light on the CO2 fixation reaction contributing to the development of more efficient catalytic systems.
- Klíčová slova
- CO2 conversion, cyclic carbonates, density functional theory, nicotinamidium iodides, organocatalysis,
- Publikační typ
- časopisecké články MeSH
The soil yeast Tetrapisispora phaffii secretes a killer toxin, named Kpkt, that shows β-glucanase activity and is lethal to wine spoilage yeasts belonging to Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. When expressed in Komagataella phaffii, recombinant Kpkt displays a wider spectrum of action as compared to its native counterpart, being active on a vast array of wine yeasts and food-related bacteria. Here, to gather information on recombinant Kpkt cytotoxicity, lyophilized preparations of this toxin (LrKpkt) were obtained and tested on immortalized human keratinocyte HaCaT cells, a model for the stratified squamous epithelium of the oral cavity and esophagus. LrKpkt proved harmless to HaCaT cells at concentrations up to 36 AU/mL, which are largely above those required to kill food-related yeasts and bacteria in vitro (0.25-2 AU/mL). At higher concentrations, it showed a dose dependent effect that was comparable to that of the negative control and therefore could be ascribed to compounds, other than the toxin, occurring in the lyophilized preparations. Considering the dearth of studies regarding the effects of yeast killer toxins on human cell lines, these results represent a first mandatory step towards the evaluation the possible risks associated to human intake. Moreover, in accordance with that observed on Ceratitis capitata and Musca domestica, they support the lack of toxicity of this toxin on non-target eukaryotic models and corroborate the possible exploitation of killer toxins as natural antimicrobials in the food and beverages industries.
- Klíčová slova
- HaCaT cells, Kpkt, natural antimicrobial, yeast killer toxin,
- Publikační typ
- časopisecké články MeSH