OBJECTIVE: The clinical diversity of schizophrenia is reflected by structural brain variability. It remains unclear how this variability manifests across different gray and white matter features. In this meta- and mega-analysis, the authors investigated how brain heterogeneity in schizophrenia is distributed across multimodal structural indicators. METHODS: The authors used the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6,037 individuals for a given brain measure. Variability and mean values of cortical thickness, cortical surface area, cortical folding index, subcortical volume, and fractional anisotropy were examined in individuals with schizophrenia and healthy control subjects. RESULTS: Individuals with schizophrenia showed greater variability in cortical thickness, cortical surface area, subcortical volume, and fractional anisotropy within the frontotemporal and subcortical network. This increased structural variability was mainly associated with psychopathological symptom domains, and the schizophrenia group frequently displayed lower mean values in the respective structural measures. Unexpectedly, folding patterns were more uniform in individuals with schizophrenia, particularly in the right caudal anterior cingulate region. The mean folding values of the right caudal anterior cingulate region did not differ between the schizophrenia and healthy control groups, and folding patterns in this region were not associated with disease-related parameters. CONCLUSIONS: In patients with schizophrenia, uniform folding patterns in the right caudal anterior cingulate region contrasted with the multimodal variability in the frontotemporal and subcortical network. While variability in the frontotemporal and subcortical network was associated with disease-related diversity, uniform folding may indicate a less flexible interplay between genetic and environmental factors during neurodevelopment.
- Klíčová slova
- Neuroimaging, Neuroscience, Schizophrenia Spectrum and Other Psychotic Disorders,
- MeSH
- anizotropie MeSH
- bílá hmota diagnostické zobrazování patologie MeSH
- cingulární gyrus patologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek * diagnostické zobrazování patologie MeSH
- mozková kůra diagnostické zobrazování patologie MeSH
- schizofrenie * patologie diagnostické zobrazování patofyziologie MeSH
- šedá hmota patologie diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- hipokampus diagnostické zobrazování patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování patologie MeSH
- neurozobrazování MeSH
- průřezové studie MeSH
- reprodukovatelnost výsledků MeSH
- schizofrenie * diagnostické zobrazování patologie MeSH
- šedá hmota * diagnostické zobrazování patologie MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
- MeSH
- dospělí MeSH
- konektom * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek patologie patofyziologie MeSH
- mozková kůra patologie patofyziologie MeSH
- nervová síť patologie patofyziologie diagnostické zobrazování MeSH
- nervové dráhy patofyziologie patologie MeSH
- schizofrenie * patologie patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Schizophrenia is associated with an increased risk of aggressive behaviour, which may partly be explained by illness-related changes in brain structure. However, previous studies have been limited by group-level analyses, small and selective samples of inpatients and long time lags between exposure and outcome. METHODS: This cross-sectional study pooled data from 20 sites participating in the international ENIGMA-Schizophrenia Working Group. Sites acquired T1-weighted and diffusion-weighted magnetic resonance imaging scans in a total of 2095 patients with schizophrenia and 2861 healthy controls. Measures of grey matter volume and white matter microstructural integrity were extracted from the scans using harmonised protocols. For each measure, normative modelling was used to calculate how much patients deviated (in z-scores) from healthy controls at the individual level. Ordinal regression models were used to estimate the associations of these deviations with concurrent aggressive behaviour (as odds ratios [ORs] with 99% confidence intervals [CIs]). Mediation analyses were performed for positive symptoms (i.e., delusions, hallucinations and disorganised thinking), impulse control and illness insight. Aggression and potential mediators were assessed with the Positive and Negative Syndrome Scale, Scale for the Assessment of Positive Symptoms or Brief Psychiatric Rating Scale. RESULTS: Aggressive behaviour was significantly associated with reductions in total cortical volume (OR [99% CI] = 0.88 [0.78, 0.98], p = .003) and global white matter integrity (OR [99% CI] = 0.72 [0.59, 0.88], p = 3.50 × 10-5) and additional reductions in dorsolateral prefrontal cortex volume (OR [99% CI] = 0.85 [0.74, 0.97], p =.002), inferior parietal lobule volume (OR [99% CI] = 0.76 [0.66, 0.87], p = 2.20 × 10-7) and internal capsule integrity (OR [99% CI] = 0.76 [0.63, 0.92], p = 2.90 × 10-4). Except for inferior parietal lobule volume, these associations were largely mediated by increased severity of positive symptoms and reduced impulse control. CONCLUSIONS: This study provides evidence that the co-occurrence of positive symptoms, poor impulse control and aggressive behaviour in schizophrenia has a neurobiological basis, which may inform the development of therapeutic interventions.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
- Klíčová slova
- ENIGMA, artificial intelligence, brain gray matter, schizophrenia, structural MRI, subtype,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
- Klíčová slova
- Schizophrenia, asymmetry, brain imaging, cortical, subcortical,
- MeSH
- funkční lateralita MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování MeSH
- mozková kůra MeSH
- schizofrenie * diagnostické zobrazování MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions.
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patologie MeSH
- prospektivní studie MeSH
- schizofrenie * MeSH
- senioři MeSH
- stárnutí MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH