This study aims to investigate the in vitro effects of nanoparticles (NPs) produced during the selective laser melting (SLM) of 316 L stainless steel metal powder on the immune response in a human blood model. Experimental data did not reveal effect on viability of 316 L NPs for the tested doses. Functional immune assays showed a significant immunosuppressive effect of NPs. There was moderate stimulation (117%) of monocyte phagocytic activity without significant changes in phagocytic activity and respiratory burst of granulocytes. A significant dose-dependent increase in the levels of the pro-inflammatory cytokine TNF-a was found in blood cultures treated with NPs. On the contrary, IL-8 chemokine levels were significantly suppressed. The levels of the pro-inflammatory cytokine IL-6 were reduced by only a single concentration of NPs. These new findings can minimise potential health risks and indicate the need for more research in this area.
- Klíčová slova
- 3D printing, Immunotoxicity, Metal alloy powders, Selective laser melting,
- MeSH
- 3D tisk MeSH
- cytokiny MeSH
- kovy MeSH
- lidé MeSH
- nanočástice * toxicita MeSH
- nerezavějící ocel * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
- kovy MeSH
- nerezavějící ocel * MeSH
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
- Klíčová slova
- antioxidant defense, copper oxide nanoparticles, cytokines, immune response, immunotoxicity, inflammation, lymphocytes, phagocytic activity and respiratory burst,
- MeSH
- adaptivní imunita MeSH
- antioxidancia MeSH
- cytokiny MeSH
- měď * toxicita MeSH
- myši MeSH
- nanočástice * toxicita MeSH
- oxidy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- cytokiny MeSH
- měď * MeSH
- oxidy MeSH
Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.82 nm, mass concentration: 31.7 μg CdO/m3, total deposited dose: 0.195 μg CdO/g body weight). CdO NPs increased percentage of thymus CD3e+CD8a+ cells and moderately enhanced splenocyte proliferation and production of cytokines and chemokines. CdO NPs elevated pro-fibrotic factors (TGF-β2, α-SMA and collagen I) in the kidney, and concentrations of AGEs in the intestine. The ratio of GSH and GSSG in blood was slightly reduced. Exposure to CdO NPs resulted in 10-fold higher Cd concentration in tibia bones. No differences were found in bone mass density, mineral content, bone area values, bone concentrations of Ca, P, Mg and Ca/P ratio. Our findings indicate stimulation of immune/inflammatory response, oxidative stress in the intestine, starting fibrotic response in kidneys and accumulation of CdO NPs in bones of mice.
- Klíčová slova
- Cadmium oxide nanoparticles, Inhalation, Mice, Nanotoxicology,
- MeSH
- aplikace inhalační MeSH
- buněčná imunita účinky léků MeSH
- cytokiny metabolismus MeSH
- fibróza chemicky indukované MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- ledviny účinky léků patologie MeSH
- lymfatické uzliny účinky léků MeSH
- myši inbrední ICR MeSH
- oxidační stres účinky léků MeSH
- oxidy aplikace a dávkování toxicita MeSH
- slezina účinky léků MeSH
- sloučeniny kadmia aplikace a dávkování toxicita MeSH
- střeva účinky léků MeSH
- thymus účinky léků MeSH
- tibie účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cadmium oxide MeSH Prohlížeč
- cytokiny MeSH
- oxidy MeSH
- sloučeniny kadmia MeSH