Ceramides are key components of the skin's permeability barrier. In atopic dermatitis, pathological hydrolysis of ceramide precursors - glucosylceramides and sphingomyelin - into lysosphingolipids, specifically glucosylsphingosine (GS) and sphingosine-phosphorylcholine (SPC), and free fatty acids (FFAs) has been proposed to contribute to impaired skin barrier function. This study investigated whether replacing ceramides with lysosphingolipids and FFAs in skin lipid barrier models would exacerbate barrier dysfunction. When applied topically to human stratum corneum sheets, SPC and GS increased water loss, decreased electrical impedance, and slightly disordered lipid chains. In lipid models containing isolated human stratum corneum ceramides, reducing ceramides by ≥ 30% significantly increased permeability to four markers, likely due to loss of long-periodicity phase (LPP) lamellae and phase separation within the lipid matrix, as revealed by X-ray diffraction and infrared spectroscopy. However, when the missing ceramides were replaced by lysosphingolipids and FFAs, no further increase in permeability was observed. Conversely, these molecules partially mitigated the negative effects of ceramide deficiency, particularly with 5%-10% SPC, which reduced permeability even compared to control with "healthy" lipid composition. These findings suggest that while ceramide deficiency is a key factor in skin barrier dysfunction, the presence of lysosphingolipids and FFAs does not aggravate lipid structural or functional damage, but may provide partial compensation, raising further questions about the behavior of lyso(sphingo)lipids in rigid multilamellar lipid environments, such as the stratum corneum, that warrant further investigation.
- Klíčová slova
- ceramide, fatty acid, glucosylsphingosine, lipid model, lysolipid, permeability, skin barrier, sphingosine-phosphorylcholine,
- MeSH
- ceramidy * metabolismus nedostatek MeSH
- fosforylcholin analogy a deriváty MeSH
- kůže * metabolismus účinky léků MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- lidé MeSH
- lysofosfolipidy * metabolismus MeSH
- permeabilita MeSH
- sfingolipidy * metabolismus MeSH
- sfingosin analogy a deriváty metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ceramidy * MeSH
- fosforylcholin MeSH
- kyseliny mastné neesterifikované MeSH
- lysofosfolipidy * MeSH
- sfingolipidy * MeSH
- sfingosin MeSH
- sphingosine phosphorylcholine MeSH Prohlížeč
When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier. The lipid envelope also maintains the fluidity of the extracellular lipids during mechanical stress. This local lipid fluidization does not compromise the permeability barrier. The results provide new testable hypotheses about epidermal homeostasis and the pathophysiology underlying diseases with impaired lipid binding to corneocytes, such as congenital ichthyosis. In a broader sense, this lipoprotein-mediated fluidization of rigid (sphingo)lipid patches may also be relevant to lipid rafts and cellular signaling events and inspire new functional materials.
- Klíčová slova
- barrier, lipid assembly, membrane remodeling, permeability, template,
- MeSH
- lidé MeSH
- lipidy chemie MeSH
- membránové proteiny * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
- membránové proteiny * MeSH
Ionic liquids (ILs) have great potential to facilitate transdermal and topical drug delivery. Here, we investigated the mechanism of action of amphiphilic ILs 1-methyl-3-octylimidazolium bromide (C8MIM) and 3-dodecyl-1-methylimidazolium bromide (C12MIM) in skin barrier lipid models in comparison to their complex effects in human skin. C8MIM incorporated in a skin lipid model was a better permeation enhancer than C12MIM for water and model drugs, theophylline and diclofenac. Solid state 2H NMR and X-ray diffraction indicated that both ILs prefer the cholesterol-rich regions in skin lipids without significantly perturbing their lamellar arrangement and that C8MIM induces the formation of an isotropic lipid phase to a greater extent compared to C12MIM. C12MIM applied topically to the lipid model or human skin as a pretreatment was more potent than C8MIM. When co-applied with the drugs to human skin, aqueous C12MIM was more potent than C8MIM in enhancing theophylline permeation, but neither IL affected (even decreased) diclofenac permeation. Thus, the IL's ability to permeabilize skin lipid barrier is strongly modulated by its ability to reach the site of action and its interactions with drug and solvent. Such an interplay is far from trivial and requires detailed investigation to realize the full potential of ILs.
- Klíčová slova
- Ionic liquid, Lipid model, Permeation, Skin barrier, Solid-state NMR, Transdermal drug delivery,
- MeSH
- aplikace kožní MeSH
- diklofenak farmakologie MeSH
- iontové kapaliny * farmakologie chemie MeSH
- lidé MeSH
- lipidy MeSH
- theofylin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diklofenak MeSH
- iontové kapaliny * MeSH
- lipidy MeSH
- theofylin MeSH
Oleic acid and oleyl alcohol are commonly used permeation and penetration enhancers to facilitate topical drug delivery. Here, we aimed to better understand the mechanism of their enhancing effects in terms of their interactions with the human skin barrier using diclofenac diethylamine (DIC-DEA), a nonsteroidal anti-inflammatory drug for topical pain management. Oleic acid promoted DIC-DEA permeation through ex vivo human skin more rapidly than oleyl alcohol (both applied at 0.75%) due to fluidization of stratum corneum lipids as revealed by infrared spectroscopy. After 12 h, the effect of these enhancers on DIC-DEA permeation leveled off, fluidization was no longer evident, and skin permeabilization was mainly due to the formation of fluid enhancer-rich domains. Contrary to oleyl alcohol, oleic acid adversely affected two indicators of the skin barrier integrity, transepidermal water loss and skin electrical impedance. The content of oleyl alcohol in the stratum corneum was lower than that of oleic acid (even 12 h after the enhancers were removed from the skin surface), but it caused higher DIC-DEA retention in both epidermis and dermis compared to oleic acid. The effects of oleyl alcohol and oleic acid on DIC-DEA permeation and retention in the skin were similar after a single and repeated application (4 doses every 12 h). Thus, oleyl alcohol offers several advantages over oleic acid for topical drug delivery.
- Klíčová slova
- diclofenac, infrared spectroscopy, lipid interactions, penetration enhancer, permeation enhancer, skin barrier, topical drug delivery,
- MeSH
- aplikace kožní MeSH
- kožní absorpce * MeSH
- kůže metabolismus MeSH
- kyselina olejová * farmakologie metabolismus MeSH
- lidé MeSH
- mastné alkoholy metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina olejová * MeSH
- mastné alkoholy MeSH
- oleyl alcohol MeSH Prohlížeč
The lipids in the mammalian stratum corneum (SC) adopt an unusually rigid arrangement to form a vital barrier preventing water loss and harmful environmental impacts. Just above the physiological temperature, a subset of barrier lipids undergoes a phase transition from a very tight orthorhombic to a looser hexagonal arrangement and vice versa. The purpose of this lipid transition in skin physiology is unknown. Permeability experiments on isolated human SC indicated that the transition affects the activation energy for a model compound that prefers lateral movement along lipid layers but not for water or a large polymer that would cross the SC through the pore pathway. The orthorhombic phase content of SC lipids, as determined by infrared spectroscopy, was also modulated by (de)hydration. Spontaneous rearrangement of human SC lipid monolayers into 10 nm higher multilamellar islets at 32-37 °C but not at room temperature was revealed by atomic force microscopy. Our findings add to our knowledge of fundamental skin physiology suggesting a fine temperature- and hydration-controlled switch from fluid lipids (required for lipid barrier assembly) to rigid and tightly packed lipids in the mature SC (necessary for the water and permeability barriers).
The negative impact of cigarette smoking on the skin includes accelerated aging, pigmentation disorders, and impaired wound healing, but its effect on the skin barrier is not completely understood. Here, we studied the changes in selected epidermal proteins and lipids between smokers (45-66 years, smoking > 10 years, > 10 cigarettes per day) and non-smokers. Volar forearm epidermal and stratum corneum samples, obtained by suction blister and tape stripping, respectively, showed increased thickness in smokers. In the epidermis of smokers, we observed a significant upregulation of filaggrin, loricrin, and a trend of increased involucrin but no differences were found in the case of transglutaminase 1 and kallikrein-related peptidase 7, on the gene and protein levels. No significant changes were observed in the major skin barrier lipids, except for increased cholesterol sulfate in smokers. Liquid chromatography coupled with mass spectrometry revealed shorter acyl chains in ceramides, and an increased proportion of sphingosine and 6-hydroxysphingosine ceramides (with C4 trans-double bond) over dihydrosphingosine and phytosphingosine ceramides in smokers, suggesting altered desaturase 1 activity. Smokers had more ordered lipid chains found by infrared spectroscopy. In conclusion, cigarette smoking perturbs the homeostasis of the barrier proteins and lipids even at a site not directly exposed to smoke.
Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.
- Klíčová slova
- NMR spectroscopy, lipid assembly, lipid chain order, long periodicity phase, molecular dynamics, neutron diffraction, stratum corneum models,
- MeSH
- ceramidy chemie MeSH
- epidermis MeSH
- kůže chemie MeSH
- kyselina linolová * MeSH
- sfingosin analýza MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- kyselina linolová * MeSH
- sfingosin MeSH
Cerebral organoids are a prolific research topic and an emerging model system for neurological diseases in human neurobiology. However, the batch-to-batch reproducibility of current cultivation protocols is challenging and thus requires a high-throughput methodology to comprehensively characterize cerebral organoid cytoarchitecture and neural development. We report a mass spectrometry-based protocol to quantify neural tissue cell markers, cell surface lipids, and housekeeping proteins in a single organoid. Profiled traits probe the development of neural stem cells, radial glial cells, neurons, and astrocytes. We assessed the cell population heterogeneity in individually profiled organoids in the early and late neurogenesis stages. Here, we present a unifying view of cell-type specificity of profiled protein and lipid traits in neural tissue. Our workflow characterizes the cytoarchitecture, differentiation stage, and batch cultivation variation on an individual cerebral organoid level.
The stratum corneum (SC) is the largest physical barrier of the human body. It protects against physical, chemical and biological damages, and avoids evaporation of water from the deepest skin layers. For its correct functioning, the homeostasis of the SC lipid matrix is fundamental. An alteration of the lipid matrix composition and in particular of its ceramide (CER) fraction can lead to the development of pathologies such as atopic dermatitis and psoriasis. Different studies showed that the direct replenishment of SC lipids on damaged skin had positive effects on the recovery of its barrier properties. In this work, cerosomes, i.e. liposomes composed of SC lipids, have been successfully prepared in order to investigate the mechanism of interaction with a model SC lipid matrix. The cerosomes contain CER[NP], D-CER[AP], stearic acid and cholesterol. In addition, hydrogenated soybean phospholipids have been added to one of the formulations leading to an increased stability at neutral pH. For the mode of action studies, monolayer models at the air-water interface and on solid support have been deployed. The results indicated that a strong interaction occurred between SC monolayers and the cerosomes. Since both systems were negatively charged, the driving force for the interaction must be based on the ability of CERs head groups to establish intermolecular hydrogen bonding networks that energetically prevailed against the electrostatic repulsion. This work proved for the first time the mode of action by which cerosomes exploit their function as skin barrier repairing agents on the SC.
- Klíčová slova
- Ceramides, Hydrogen bonding network, Langmuir monolayer, Liposomes, Skin barrier repairing agents, Stratum corneum,
- Publikační typ
- časopisecké články MeSH