Nanosized drug crystals have been reported with enhanced apparent solubility, bioavailability, and therapeutic efficacy compared to microcrystal materials, which are not suitable for parenteral administration. However, nanocrystal design and development by bottom-up approaches are challenging, especially considering the non-standardized process parameters in the injection step. This work aims to present a systematic step-by-step approach through Quality-by-Design (QbD) and Design of Experiments (DoE) for synthesizing drug nanocrystals by a semi-automated nanoprecipitation method. Curcumin is used as a drug model due to its well-known poor water solubility (0.6 µg mL-1, 25 °C). Formal and informal risk assessment tools allow identifying the critical factors. A fractional factorial 24-1 screening design evaluates their impact on the average size and polydispersity of nanocrystals. The optimization of significant factors is done by a Central Composite Design. This response surface methodology supports the rational design of the nanocrystals, identifying and exploring the design space. The proposed joint approach leads to a reproducible, robust, and stable nanocrystalline preparation of 316 nm with a PdI of 0.217 in compliance with the quality profile. An orthogonal approach for particle size and polydispersity characterization allows discarding the formation of aggregates. Overall, the synergy between advanced data analysis and semi-automated standardized nanocrystallization of drugs is highlighted.
- Klíčová slova
- design space, nanocrystals, orthogonal characterization, response surface methodology, solvent–antisolvent precipitation,
- MeSH
- automatizace MeSH
- krystalizace MeSH
- kurkumin chemie MeSH
- léčivé přípravky chemie MeSH
- nanočástice * chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kurkumin MeSH
- léčivé přípravky MeSH
Gram-positive bacteria are responsible for a wide range of infections in humans. In most Gram-positive bacteria, sortase A plays a significant role in attaching virulence factors to the bacteria's cell wall. These cell surface proteins play a significant role in virulence and pathogenesis. Even though antibiotics are available to treat these infections, there is a continuous search for an alternative strategy due to an increase in antibiotic resistance. Thus, using anti-sortase drugs to combat these bacterial infections may be a promising approach. Here, we describe a method for targeting Gram-positive bacterial infection by combining curcumin and trans-chalcone as sortase A inhibitors. We have used curcumin and trans-chalcone alone and in combination as a sortase A inhibitor. We have seen ~78%, ~43%, and ~94% inhibition when treated with curcumin, trans-chalcone, and a combination of both compounds, respectively. The compounds have also shown a significant effect on biofilm formation, IgG binding, protein A recruitment, and IgG deposition. We discovered that combining curcumin and trans-chalcone is more effective against Gram-positive bacteria than either compound alone. The present work demonstrated that a combination of these natural compounds could be used as an antivirulence therapy against Gram-positive bacterial infection.
- Klíčová slova
- E. faecalis, S. aureus, Biofilm, Infection, Protein A, Sortase A,
- MeSH
- aminoacyltransferasy * antagonisté a inhibitory metabolismus MeSH
- antibakteriální látky * farmakologie chemie MeSH
- bakteriální proteiny * metabolismus antagonisté a inhibitory MeSH
- biofilmy * účinky léků MeSH
- chalkon * farmakologie chemie MeSH
- cysteinové endopeptidasy * účinky léků metabolismus MeSH
- faktory virulence metabolismus MeSH
- grampozitivní bakteriální infekce farmakoterapie mikrobiologie MeSH
- grampozitivní bakterie účinky léků MeSH
- kurkumin * farmakologie chemie MeSH
- mikrobiální testy citlivosti MeSH
- virulence účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminoacyltransferasy * MeSH
- antibakteriální látky * MeSH
- bakteriální proteiny * MeSH
- chalkon * MeSH
- cysteinové endopeptidasy * MeSH
- faktory virulence MeSH
- kurkumin * MeSH
- sortase A MeSH Prohlížeč
Oxidative stress and autophagy are potential mechanisms associated with cerebral ischemia/reperfusion injury (IRI) and is usually linked to inflammatory responses and apoptosis. Curcumin has recently been demonstrated to exhibit anti-inflammatory, anti-oxidant, anti-apoptotic and autophagy regulation properties. However, mechanism of curcumin on IRI-induced oxidative stress and autophagy remains not well understood. We evaluated the protective effects and potential mechanisms of curcumin on cerebral microvascular endothelial cells (bEnd.3) and neuronal cells (HT22) against oxygen glucose deprivation/reoxygenation (OGD/R) in vitro models that mimic in vivo cerebral IRI. The cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) activity assays revealed that curcumin attenuated the OGD/R-induced injury in a dose-specific manner. OGD/R induced elevated levels of inflammatory cytokines TNF-alpha, IL-6 as well as IL-1beta, and these effects were notably reduced by curcumin. OGD/R-mediated apoptosis was suppressed by curcumin via upregulating B-cell lymphoma-2 (Bcl-2) and downregulating Bcl-associated X (Bax), cleaved-caspase3 and TUNEL apoptosis marker. Additionally, curcumin increased superoxide dismutase (SOD) and glutathione (GSH), but suppressed malondialdehyde (MDA) and reactive oxygen species (ROS) content. Curcumin inhibited the levels of autophagic biomarkers such as LC3 II/LC3 I and Beclin1. Particularly, curcumin induced p62 accumulation and its interactions with keap1 and promoted NF-E2-related factor 2 (Nrf2) translocation to nucleus, accompanied by increased NADPH quinone dehydrogenase (Nqo1) and heme oxygenase 1 (HO-1). Treatment of curcumin increased phosphorylation-phosphatidylinositol 3 kinase (p-PI3K) and p-protein kinase B (p-AKT). The autophagy inhibitor 3-methyladenine (3-MA) activated the keap-1/Nrf2 and PI3K/AKT pathways. This study highlights the neuroprotective effects of curcumin on cerebral IRI.
- MeSH
- antioxidancia farmakologie metabolismus MeSH
- autofagie fyziologie MeSH
- endoteliální buňky metabolismus MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- KEAP-1 metabolismus MeSH
- kurkumin * farmakologie MeSH
- kyslík metabolismus MeSH
- neuroprotektivní látky * farmakologie MeSH
- oxidační stres MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- faktor 2 související s NF-E2 MeSH
- fosfatidylinositol-3-kinasy MeSH
- KEAP-1 MeSH
- kurkumin * MeSH
- kyslík MeSH
- neuroprotektivní látky * MeSH
- protoonkogenní proteiny c-akt MeSH
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
- Klíčová slova
- Curcumin, Metastasis, Migrastatic agents, Nanoparticles, Tumour targeting,
- MeSH
- antitumorózní látky * farmakologie terapeutické užití chemie MeSH
- kurkumin * farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky * MeSH
- kurkumin * MeSH
BACKGROUND: In the last couple of years, viral infections have been leading the globe, considered one of the most widespread and extremely damaging health problems and one of the leading causes of mortality in the modern period. Although several viral infections are discovered, such as SARS CoV-2, Langya Henipavirus, there have only been a limited number of discoveries of possible antiviral drug, and vaccine that have even received authorization for the protection of human health. Recently, another virial infection is infecting worldwide (Monkeypox, and Smallpox), which concerns pharmacists, biochemists, doctors, and healthcare providers about another epidemic. Also, currently no specific treatment is available against Monkeypox. This research gap encouraged us to develop a new molecule to fight against monkeypox and smallpox disease. So, firstly, fifty different curcumin derivatives were collected from natural sources, which are available in the PubChem database, to determine antiviral capabilities against Monkeypox and Smallpox. MATERIAL AND METHOD: Preliminarily, the molecular docking experiment of fifty different curcumin derivatives were conducted, and the majority of the substances produced the expected binding affinities. Then, twelve curcumin derivatives were picked up for further analysis based on the maximum docking score. After that, the density functional theory (DFT) was used to determine chemical characterizations such as the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), softness, and hardness, etc. RESULTS: The mentioned derivatives demonstrated docking scores greater than 6.80 kcal/mol, and the most significant binding affinity was at -8.90 kcal/mol, even though 12 molecules had higher binding scores (-8.00 kcal/mol to -8.9 kcal/mol), and better than the standard medications. The molecular dynamic simulation is described by root mean square deviation (RMSD) and root-mean-square fluctuation (RMSF), demonstrating that all the compounds might be stable in the physiological system. CONCLUSION: In conclusion, each derivative of curcumin has outstanding absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics. Hence, we recommended the aforementioned curcumin derivatives as potential antiviral agents for the treatment of Monkeypox and Smallpox virus, and more in vivo investigations are warranted to substantiate our findings.
- Klíčová slova
- DFT, admet, curcumin, molecular docking, molecular dynamic simulation, monkeypox, smallpox virus,
- MeSH
- antivirové látky farmakologie MeSH
- COVID-19 * MeSH
- Henipavirus MeSH
- kurkumin * farmakologie MeSH
- lidé MeSH
- objevování léků MeSH
- opičí neštovice * MeSH
- pravé neštovice * farmakoterapie MeSH
- racionální návrh léčiv MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- virus varioly * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- kurkumin * MeSH
Lipid nanocarriers are among the most employed systems for drug delivery purposes in several research and industrial sectors, since their favorable properties ensure broad applicability. The design and characterization of these nanosystems are of paramount importance to obtain controlled outcome, since the supramolecular structure and molecular interactions deeply impact the functionality of the resulting aggregates. The choice of the most appropriate formulation for the target of interest relies on in-depth physico-chemical characterization in order to optimize stability, loading rates and sustained release. Several supramolecular architectures suited for carrier development can be obtained from lipid building blocks, by varying lipid composition and packing parameter. In particular, cubosome and liposome aggregates are often used as drug vectors thanks to their high cargo capability and biocompatibility. Moreover, the possibility to employ lipids from natural sources i.e. biomasses to prepare nanosystems makes them especially attractive. In this work, two aggregate types were characterized and compared as drug vectors for poorly water-soluble antioxidants, particularly curcumin and two adjuvants (i.e. tocopherol and piperine). The nanovectors were obtained by extracting lipids from algal biomasses with different lipid composition, and characterized by advanced structural (DLS, SAXS, Cryo-TEM) techniques, spectroscopy (NMR) and calorimetry (ITC). Finally, the structural stability of both aggregate types was evaluated.
- Klíčová slova
- Algal lipids, Molecular interactions, Morphology, Nanocarriers, Structure,
- MeSH
- difrakce rentgenového záření MeSH
- kurkumin * chemie MeSH
- lipidy * chemie MeSH
- liposomy MeSH
- maloúhlový rozptyl MeSH
- nosiče léků chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kurkumin * MeSH
- lipidy * MeSH
- liposomy MeSH
- nosiče léků MeSH
BACKGROUND: The study was undertaken to evaluate the effect of 6-week supplementation with a daily dose of 2g of curcumin on VO2max and prooxidant/antioxidant homeostasis in middle-aged amateur long-distance runners during the preparatory period of the macrocycle. METHODS: Thirty runners were randomly assigned to a placebo group (PL) and a curcumin-supplemented group (CU). Their VO2max was assessed before supplementation and after 6 weeks of supplementation. Venous blood samples were collected from the participants at rest, immediately after exercise, and after 1h of recovery to evaluate the activity of antioxidant enzymes (SOD, CAT, GPx), non-enzymatic antioxidants (GSH, UA) and sirtuin 3 level (SIRT 3), as well as the levels of oxidative stress markers (TOS/TOC, MDA, and 8-OHdG) and muscle damage markers (CK, LDH, and Mb). RESULTS: VO2max, the activity of enzymatic antioxidants, the concentrations of non-enzymatic antioxidants, the levels of oxidative stress markers, and the levels of muscle damage markers did not change significantly in the CU group over 6 weeks of supplementation with curcumin. However, the resting concentration of SIRT 3 was found to be significantly higher (p ≤ 0.05) compared with pre-supplementation. CONCLUSION: Curcumin supplementation does not have a significant effect on VO2max and prooxidant/antioxidant homeostasis in runners.
- Klíčová slova
- Supplementation, antioxidant enzymes, flavonoids, men, non-enzymatic antioxidants, oxidative stress, prooxidant/antioxidant homeostasis, training,
- MeSH
- antioxidancia MeSH
- kurkumin * MeSH
- lidé MeSH
- potravní doplňky MeSH
- reaktivní formy kyslíku MeSH
- sirtuin 3 * MeSH
- superoxiddismutasa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- antioxidancia MeSH
- kurkumin * MeSH
- reaktivní formy kyslíku MeSH
- sirtuin 3 * MeSH
- superoxiddismutasa MeSH
Pharmaceutical nanocrystals represent a promising new formulation that combines the benefits of bulk crystalline materials and colloidal nanoparticles. To be applied in vivo, nanocrystals must meet several criteria, namely colloidal stability in physiological media, non-toxicity to healthy cells, avoidance of macrophage clearance, and bioactivity in the target tissue. In the present work, curcumin, a naturally occurring poorly water-soluble molecule with a broad spectrum of bioactivity has been considered a candidate substance for preparing pharmaceutical nanocrystals. Curcumin nanocrystals in the size range of 40-90 nm were prepared by wet milling using the following combination of steric and ionic stabilizers: Tween 80, sodium dodecyl sulfate, Poloxamer 188, hydroxypropyl methylcellulose, phospholipids (with and without polyethylene glycol), and their combination. Nanocrystals stabilized by a combination of phospholipids enriched with polyethylene glycol proved to be the most successful in all evaluated criteria; they were colloidally stable in all media, exhibited low macrophage clearance, and proved non-toxic to healthy cells. This curcumin nanoformulation also exhibited outstanding anticancer potential comparable to commercially used cytostatics (IC50 = 73 µM; 24 h, HT-29 colorectal carcinoma cell line) which represents an improvement of several orders of magnitude when compared to previously studied curcumin formulations. This work shows that the preparation of phospholipid-stabilized nanocrystals allows for the conversion of poorly soluble compounds into a highly effective "solution-like" drug delivery system at pharmaceutically relevant drug concentrations.
- MeSH
- deriváty hypromelózy MeSH
- dodecylsíran sodný chemie MeSH
- fosfolipidy MeSH
- kurkumin * chemie farmakologie MeSH
- léčivé přípravky MeSH
- makrofágy MeSH
- nanočástice * chemie MeSH
- poloxamer chemie MeSH
- polyethylenglykoly chemie MeSH
- polysorbáty MeSH
- rozpustnost MeSH
- velikost částic MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deriváty hypromelózy MeSH
- dodecylsíran sodný MeSH
- fosfolipidy MeSH
- kurkumin * MeSH
- léčivé přípravky MeSH
- poloxamer MeSH
- polyethylenglykoly MeSH
- polysorbáty MeSH
- voda MeSH
In the rat model, 6-hydroxydopamine (6-OHDA) known as a selective catecholaminergic neurotoxin used chiefly in modeling Parkinson's disease (PD). Continuous aerobic exercise and curcumin supplementations could play a vital role in neuroprotection. This study aimed to explore the neuroprotective roles of regular aerobic exercise and curcumin during PD. For this, rats were treated as follows for 8 consecutive weeks (5 d in a week): For this, animals were orally treated with curcumin (50 ml/kg) alone or in combination with aerobic exercise. Compared with a control group, induction of PD by 6-OHDA increased the amount of alpha-synuclein protein and malondialdehyde levels and decreased the number of substantia nigra neurons, total antioxidant capacity, and glutathione peroxidase activity in brain tissue. All these changes were abolished by the administration of curcumin with aerobic exercise treatments. Activity behavioral tests also confirmed the above-mentioned results by increasing the rod test time and the number of rotations due to apomorphine injection. Histopathology assays mimic the antioxidant activity and behavioral observations. Combined curcumin with aerobic exercise treatments is potentially an effective strategy for modifying the dopaminergic neuron dysfunction in 6-OHDA-induced rats modeling PD via dual inhibiting oxidative stress indices and regulating behavioral tasks.
- MeSH
- alfa-synuklein metabolismus MeSH
- antioxidancia metabolismus farmakologie MeSH
- apomorfin metabolismus farmakologie MeSH
- glutathionperoxidasa metabolismus MeSH
- krysa rodu Rattus MeSH
- kurkumin * metabolismus farmakologie MeSH
- malondialdehyd MeSH
- modely nemocí na zvířatech MeSH
- neuroprotektivní látky * farmakologie MeSH
- neurotoxické syndromy * MeSH
- neurotoxiny metabolismus farmakologie MeSH
- oxidopamin toxicita MeSH
- Parkinsonova nemoc * farmakoterapie metabolismus MeSH
- substantia nigra MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa-synuklein MeSH
- antioxidancia MeSH
- apomorfin MeSH
- glutathionperoxidasa MeSH
- kurkumin * MeSH
- malondialdehyd MeSH
- neuroprotektivní látky * MeSH
- neurotoxiny MeSH
- oxidopamin MeSH
Curcumin and its congeners exist in an equilibrium between diketo and ketoenol tautomers, which have different potencies to bind biomolecules. This work describes procedures for the preparation of 4-alkylated curcumin derivatives and the separation of their two tautomeric forms. Comprehensive NMR studies of the tautomer equilibria in various solvents have been accomplished. Additionally, a pure ketoenol tautomeric form of the active pharmaceutical ingredient (API) ASC-JM17 has been unequivocally determined by X-ray crystallography. Two different polymorphs of this API have been microscopically identified in the X-ray sample and manually separated, and a solid-state NMR study of the two polymorphs has also been performed. This work reports on the slow kinetics of diketo-ketoenol tautomerization in particular solvents that allow the separation and full characterization of both curcuminoids' tautomers.
- MeSH
- diarylheptanoidy * MeSH
- isomerie MeSH
- kinetika MeSH
- kurkumin * chemie MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diarylheptanoidy * MeSH
- kurkumin * MeSH
- rozpouštědla MeSH