Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
- Klíčová slova
- Biopesticides, Endochitinases, Protoplasts, Single Cell Proteins (SCPs), Waste Management,
- MeSH
- bezobratlí metabolismus MeSH
- chitin chemie metabolismus MeSH
- chitinasy * MeSH
- ekosystém * MeSH
- houby metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chitin MeSH
- chitinasy * MeSH
Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.
- Klíčová slova
- Benthic invertebrates, European chub, Juvenile fish, Passive sampling, Pharmaceuticals, Zebra mussel,
- MeSH
- bezobratlí metabolismus MeSH
- biologický monitoring MeSH
- chemické látky znečišťující vodu * analýza MeSH
- léčivé přípravky metabolismus MeSH
- monitorování životního prostředí MeSH
- řeky MeSH
- ryby metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- léčivé přípravky MeSH
Wastewater treatment plant effluents have been identified as a major contributor to increasing anthropogenic pollution in aquatic environments worldwide. Yet, little is known about the potentially adverse effects of wastewater treatment plant effluent on aquatic invertebrates. In this study, we assessed effects of wastewater effluent on the behaviour and metabolic profiles of damselfly larvae (Coenagrion hastulatum), a common aquatic invertebrate species. Four key behavioural traits: activity, boldness, escape response, and foraging (traits all linked tightly to individual fitness) were studied in larvae before and after one week of exposure to a range of effluent dilutions (0, 50, 75, 100%). Effluent exposure reduced activity and foraging, but generated faster escape response. Metabolomic analyses via targeted and non-targeted mass spectrometry methods revealed that exposure caused significant changes to 14 individual compounds (4 amino acids, 3 carnitines, 3 lysolipids, 1 peptide, 2 sugar acids, 1 sugar). Taken together, these compound changes indicate an increase in protein metabolism and oxidative stress. Our findings illustrate that wastewater effluent can affect both behavioural and physiological traits of aquatic invertebrates, and as such might pose an even greater threat to aquatic ecosystems than previously assumed. More long-term studies are now needed evaluate if these changes are linked to adverse effects on fitness. The combination of behavioural and metabolomic assessments provide a promising tool for detecting effects of wastewater effluent, on multiple biological levels of organisation, in aquatic ecosystems.
- MeSH
- bezobratlí metabolismus MeSH
- chemické látky znečišťující vodu * metabolismus MeSH
- ekosystém MeSH
- larva metabolismus MeSH
- odpadní voda * chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- odpadní voda * MeSH
CONTEXT: Bryostatins represent an important group of pharmaceutically promising substances. These compounds are produced by commensal microorganisms naturally occurring in marine invertebrates, mainly in bryozoans. The most frequently investigated substance is bryostatin-1, which is a highly oxygenated macrolide with a polyacetate backbone. OBJECTIVE: The aim of this work was to summarize documented preclinical and clinical effects of bryostatin-class compounds. METHODS: A literature search was made of Medline and Web of Science databases in 2012. RESULTS AND CONCLUSION: Our review showed that bryostatins are potent agonists of protein kinase C. In addition to this, their significant antineoplastic activity against several tumor types has also been established and described. Bryostatin's anticancer activity has been proved against various cancer types. Moreover, significant results have been achieved by using bryostatin-1 in combination with other therapies, including combination with vaccine testing. Concerning other important properties that bryostatins possess, their ability to sensitize some resistant cells to chemotherapy agents, or immunoactivity and further stimulating growth of new neural connections, and enhancing effect on long-term memory are worth mentioning. In particular, some new bryostatin analogs could represent potential therapeutic agent for the treatment of cancer and other diseases in future.
- MeSH
- bezobratlí metabolismus MeSH
- biologické přípravky chemie farmakologie MeSH
- bryostatiny chemie farmakologie MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- nádory farmakoterapie patologie MeSH
- preklinické hodnocení léčiv MeSH
- proteinkinasa C účinky léků metabolismus MeSH
- protinádorové látky chemie farmakologie MeSH
- vodní organismy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky MeSH
- bryostatiny MeSH
- proteinkinasa C MeSH
- protinádorové látky MeSH
Sediments of the Elbe River have been extremely polluted by contaminants originating from previous large-scale hexachlorocyclohexane (HCH) production and the application of γ-HCH (lindane) in its catchment in the second half of the twentieth century. In order to gain knowledge on bioaccumulation processes at lower trophic levels, field investigations of HCHs in macroinvertebrates were carried out along the longitudinal profile of the Elbe and tributary. Among the sites studied, concentrations in macroinvertebrates ranged within five orders of magnitude (0.01-100 μg/kg). In general, lower values of HCH isomers were observed at all Czech sites (mostly <1 μg/kg) compared with those in Germany. At the most contaminated site, Spittelwasser brook (a tributary of the Mulde), extremely high concentrations were measured (up to 234 μg/kg α-HCH and 587 μg/kg β-HCH in Hydropsychidae). In contrast, the Obříství site, though also influenced by HCH production facilities, showed only negligibly elevated values (mostly <1 μg/kg). Results showed that fairly high levels of α-HCH and β-HCH compared to γ-HCH can still be detected in aquatic environments of the Elbe catchment, and these concentrations are decreasing over time to a lesser extent than γ-HCH. Higher HCH concentrations in sediments in the springtime are considered to be the result of erosion and transport processes during and after spring floods, and lower concentrations at sites downstream are thought to be caused by the time lapse involved in the transportation of contaminated particles from upstream. In addition, comparison with fish (bream) data from the literature revealed no increase in tissue concentrations between invertebrates and fish.
- MeSH
- bezobratlí metabolismus MeSH
- chemické látky znečišťující vodu analýza metabolismus MeSH
- chemické znečištění vody statistika a číselné údaje MeSH
- geologické sedimenty chemie MeSH
- hexachlorbenzen analýza metabolismus MeSH
- hexachlorcyklohexan analýza metabolismus MeSH
- monitorování životního prostředí * MeSH
- potravní řetězec MeSH
- řeky chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
- Názvy látek
- alpha-hexachlorocyclohexane MeSH Prohlížeč
- beta-hexachlorocyclohexane MeSH Prohlížeč
- chemické látky znečišťující vodu MeSH
- hexachlorbenzen MeSH
- hexachlorcyklohexan MeSH