Nejvíce citovaný článek - PubMed ID 10075850
Despite therapeutic advances, neurodegenerative diseases and disorders remain some of the leading causes of mortality and morbidity in the United States. Therefore, cell-based therapies to replace lost or damaged neurons and supporting cells of the central nervous system (CNS) are of great therapeutic interest. To that end, human pluripotent stem cell (hPSC) derived neural progenitor cells (hNPCs) and their neuronal derivatives could provide the cellular 'raw material' needed for regenerative medicine therapies for a variety of CNS disorders. In addition, hNPCs derived from patient-specific hPSCs could be used to elucidate the underlying mechanisms of neurodegenerative diseases and identify potential drug candidates. However, the scientific and clinical application of hNPCs requires the development of robust, defined, and scalable substrates for their long-term expansion and neuronal differentiation. In this study, we rationally designed a vitronectin-derived peptide (VDP) that served as an adhesive growth substrate for the long-term expansion of several hNPC lines. Moreover, VDP-coated surfaces allowed for the directed neuronal differentiation of hNPC at levels similar to cells differentiated on traditional extracellular matrix protein-based substrates. Overall, the ability of VDP to support the long-term expansion and directed neuronal differentiation of hNPCs will significantly advance the future translational application of these cells in treating injuries, disorders, and diseases of the CNS.
- Klíčová slova
- Defined conditions, Human neural progenitor cells, Human pluripotent stem cells, Peptide,
- MeSH
- biokompatibilní potahované materiály farmakologie MeSH
- buněčná adheze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- lidé MeSH
- molekuly buněčné adheze metabolismus MeSH
- myši MeSH
- nervové kmenové buňky cytologie účinky léků metabolismus MeSH
- neurony cytologie účinky léků metabolismus MeSH
- peptidy farmakologie MeSH
- pluripotentní kmenové buňky cytologie účinky léků metabolismus MeSH
- proliferace buněk účinky léků MeSH
- vitronektin farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- biokompatibilní potahované materiály MeSH
- extracelulární matrix - proteiny MeSH
- molekuly buněčné adheze MeSH
- peptidy MeSH
- vitronektin MeSH
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
- Klíčová slova
- Dental stem cells, Growth factors, Immunomodulation, Neuroprotection, Spinal cord injury,
- MeSH
- kmenové buňky cytologie MeSH
- lidé MeSH
- neurotrofní faktory metabolismus MeSH
- poranění míchy terapie MeSH
- receptory faktorů růstu nervů metabolismus MeSH
- regenerativní lékařství MeSH
- transplantace kmenových buněk * MeSH
- zubní dřeň cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- neurotrofní faktory MeSH
- receptory faktorů růstu nervů MeSH
Notch and gp130 signaling are involved in the regulation of multiple cellular processes across various tissues during animal ontogenesis. In the developing nervous system, both signaling pathways intervene at many stages to determine cell fate-from the first neural lineage commitment and generation of neuronal precursors, to the terminal specification of cells as neurons and glia. In most cases, the effects of Notch and gp130 signaling in these processes are similar. The aim of the current review was to summarize the knowledge regarding the roles of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells during animal ontogenesis, from early embryo to adult. Recent data show a direct crosstalk between these signaling pathways that seems to be specific for a particular type of neural progenitors.
- MeSH
- cytokinový receptor gp130 metabolismus MeSH
- interakce mezi receptory a ligandy MeSH
- lidé MeSH
- nervové kmenové buňky metabolismus MeSH
- neurogeneze MeSH
- receptory Notch metabolismus MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokinový receptor gp130 MeSH
- receptory Notch MeSH