Nejvíce citovaný článek - PubMed ID 10462503
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
- MeSH
- anthelmintika * farmakologie metabolismus farmakokinetika MeSH
- biotransformace MeSH
- hlístice * účinky léků metabolismus enzymologie MeSH
- léková rezistence * MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anthelmintika * MeSH
Xenoreceptors of the nuclear receptor superfamily, such as pregnane X receptor (PXR), are liver-enriched ligand-activated transcription factors regarded as crucial sensors in xenobiotic exposure and detoxification. PXR controls transcription of many drug-handling genes and influx/efflux transporters, thus playing a crucial role in drug metabolism and excretion. Liver functions have been studied using primary human hepatocytes (PHHs), which, when conventionally cultured, undergo rapid de-differentiation, leaving them unsuitable for long-term studies. Recently, 3D PHHs called spheroids have emerged as an in vitro model that is similar to in vivo hepatocytes regarding phenotype and function and represents the first in vitro model to study the long-term regulation of drug-handling genes by PXR. In this study, we used mathematical modelling to analyze the long-term activation of PXR in 3D PHHs through expression kinetics of three key PXR-regulated drug-metabolizing enzymes, CYP3A4, CYP2C9, and CYP2B6 and the P-glycoprotein efflux transporter encoding gene, MDR1. PXR action in 3D PHHs was induced by the antibiotic rifampicin at two clinically relevant concentrations. The results confirmed that high rifampicin concentrations activated PXR nearly to its full capacity. The analysis indicated the highest PXR-induced transcription rate constant for CYP2B6. The rate constant dictating mRNA degradation associated with activated PXR was highest for CYP3A4. Moreover, we measured the metabolic activity of CYP3A4, CYP2C9, and CYP2B6 and quantified their metabolic rate constants. Metabolic activity rate constant of CYP3A4 was found to be the highest whereas that of CYP2B6 was found to be the lowest among the studied enzymes. Our results provide important insight into the regulation of PXR-target genes in 3D PHHs and show that mRNA expression and metabolic activity data can be combined with quantitative analysis to reveal the long-term action of PXR and its effects on drug-handling genes.
- MeSH
- biologické modely MeSH
- buněčné sféroidy * metabolismus MeSH
- cytochrom P-450 CYP3A metabolismus genetika MeSH
- hepatocyty * metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- pregnanový X receptor * metabolismus MeSH
- regulace genové exprese * MeSH
- rifampin farmakologie MeSH
- steroidní receptory * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochrom P-450 CYP3A MeSH
- pregnanový X receptor * MeSH
- rifampin MeSH
- steroidní receptory * MeSH
Cytochrome P450 (CYP) is a major group of enzymes, which conduct Phase I metabolism. Among commonly used animal models, the pig has been suggested as the most suitable model for investigating drug metabolism in human beings. Moreover, porcine CYP2A19 and CYP2E1 are responsible for the biotransformation of both endogenous and exogenous compounds such as 3-methylindole (skatole), sex hormones and food compounds. However, little is known about the regulation of porcine CYP2A19 and CYP2E1. In this MiniReview, we summarise the current knowledge about the regulation of porcine CYP2A19 and CYP2E1 by environmental, biological and dietary factors. Finally, we reflect on the need for further research, to clarify the interaction between active feed components and the porcine CYP system.
- Klíčová slova
- bioactive compounds, phase I enzymes, pig, skatole,
- MeSH
- biotransformace MeSH
- cytochrom P-450 CYP2E1 genetika metabolismus MeSH
- cytochrom P450 CYP2A6 genetika metabolismus MeSH
- krmivo pro zvířata * MeSH
- lidé MeSH
- pohlavní steroidní hormony metabolismus MeSH
- prasata metabolismus MeSH
- sekvenční homologie MeSH
- skatol metabolismus MeSH
- xenobiotika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytochrom P-450 CYP2E1 MeSH
- cytochrom P450 CYP2A6 MeSH
- pohlavní steroidní hormony MeSH
- skatol MeSH
- xenobiotika MeSH