Most cited article - PubMed ID 10638682
Global brain dynamics of transient visual evoked potentials
BACKGROUND: For patients with age-related macular degeneration (AMD), a special intraocular lens implantation partially compensates for the loss in the central part of the visual field. For six months, we evaluated changes in neurophysiological parameters in patients implanted with a "Scharioth macula lens" (SML; a center near high add + 10 D and peripheral plano carrier bifocal lens designed to be located between the iris and an artificial lens). METHODS: Fourteen patients (5 M, 9 F, 63-87 years) with dry AMD were examined prior to and at 3 days after, as well as 1, 2, and 6 months after, implantation using pattern-reversal, motion-onset, and cognitive evoked potentials, psychophysical tests evaluating distant and near visual acuity, and contrast sensitivity. RESULTS: Near visual acuity without an external aid was significantly better six months after implantation than before implantation (Jaeger table median (lower; upper quartile): 4 (1; 6) vs. 15 (13; 17)). Distant visual acuity was significantly altered between the pre- (0.7 (0.5; 0.8) logMAR) and last postimplantation visits (0.8 (0.7; 0.8) logMAR), which matched prolongation of the P100 peak time (147 (135; 151) ms vs. 161 (141; 166) ms) of 15 arc min pattern-reversal VEPs and N2 peak time (191.5 (186.5; 214.5) ms vs. 205 (187; 218) ms) of peripheral motion-onset VEPs. CONCLUSION: SML implantation significantly improved near vision. We also observed a slight but significant decrease in distant and peripheral vision. The most efficient electrophysiological approach to test patients with SML was the peripheral motion-onset stimulation, which evoked repeatable and readable VEPs.
- Keywords
- Age-related macular degeneration, Maculopathy, Motion-onset VEPs, Oddball ERPs, P3b, Pattern-reversal VEPs, Scharioth macular lens,
- MeSH
- Electroretinography MeSH
- Lens Implantation, Intraocular MeSH
- Humans MeSH
- Macular Degeneration * MeSH
- Lenses, Intraocular * MeSH
- Visual Acuity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
PURPOSE: The implantation of an intraocular telescope increases life quality in patients with end-stage age-related macular degeneration (AMD). The present study monitored changes in electrophysiological markers of visual processing before and during seventeen months after a novel mirror telescope implantation in two patients (OV-male 90 years, MZ-female 70 years) with the final-stage form of AMD. METHODS: Visual evoked potentials were recorded to high-contrast pattern-reversal (PR-VEP for check size 40' and 10'), low-contrast motion-onset stimuli (in visual periphery M-VEP M20°, and in central part M-VEP C8°), and event-related potentials (ERPs) in the oddball visual paradigm. RESULTS: MZ's more systematic responses showed attenuation and prolongation of the M-VEP M20° and the PR-VEP 40' immediately after the telescope implantation with a slow amplitude recovery with unchanged prolonged latency. The implantation completely eradicated the M-VEP C8° without any restoration. The PR-VEP 10' were not readable. Only a part of OV's PR-VEP 40' and M-VEP M20' were of a repeatable and expected morphology. These OV's VEPs were consistent with MZ's findings. The ERPs did not show any effect of implantation in both patients. Post-implantation visual acuity and reaction time overcame the pre-implantation levels. CONCLUSIONS: The mirror telescope preserved peripheral vision in contrast to classic telescopes; however, the telescope concurrently reduced the luminance of the magnified retinal image, which was likely responsible for the prolongation of the VEP latencies.
- Keywords
- Age-related macular degeneration, Intraocular mirror telescope, Motion-onset VEPs, Oddball ERPs, P3b, Pattern-reversal VEPs,
- MeSH
- Lenses * MeSH
- Humans MeSH
- Macular Degeneration * physiopathology rehabilitation MeSH
- Pattern Recognition, Visual physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Telescopes * MeSH
- Visual Acuity MeSH
- Visual Perception physiology MeSH
- Evoked Potentials, Visual * MeSH
- Visual Prosthesis * standards MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Visual evoked potentials to motion-onset stimulation (M-VEPs) gradually attenuate in amplitude during examination. The observed decline in averaged responses can be caused by decreases in single response magnitudes and/or increased variability in a response delays, that is, latency jittering. To illuminate the origins of the suppression of M-VEPs during stimuli repetition, we used correlation technique to estimate an upper bound of possible latency jittering of single sweeps and we evaluated the effect of its correction on the amplitudes of three M-VEP dominant peaks P1, N2 and P3. During prolonged visual motion stimulation, the variability of corrective latency shifts in the occipital region increased (r = 0.35: 0.44) and the number of single responses corresponding to the average curve declined in occipital and parietal derivations (r = -0.48: -0.62). While the P1 peak amplitude did not exhibit any time-specific behaviour, the N2 amplitude exhibited a significant decay of 29.4% that was partially reduced to 16.6% in the central occipital derivation by the latency jitter and non-correspondence corrections. The strongest attenuation (32.7%) was observed in the P3 amplitude and was less sensitive to the corrections, dropping only to 27.9%. The main part of the response suppression to repeated motion stimulation was caused by amplitude drop and represents non-stationary process that likely correspond to a fatigue model. The rise of variability in latency jitter correction and the reduction in single responses correlated with the M-VEP were significant factors associated with prolonged motion stimulation. The relation of these parameters to a hypothetical veridical response is ambiguous and can be caused by a time shift of the response or by a change of signal-to-noise ratio. Using selective averaging and latency jitter correction, the effect of response suppression was partially removed.
- MeSH
- Adaptation, Ocular physiology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Pattern Recognition, Visual physiology MeSH
- Motion Perception physiology MeSH
- Evoked Potentials, Visual physiology MeSH
- Visual Cortex physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVE: Methamphetamine (MAP) is an indirect dopamine agonist that can temporarily increase cognitive performance. However, its long-term abuse may cause dopamine depletion and consequent cognitive and attentional impairment. The worsening of visual functions in Parkinson's disease and their improvement after levodopa administration implicates the role of dopamine in the physiology of vision. This provides the rationale for the investigation of visual functions in abstaining MAP abusers. METHODS: We investigated changes in visually evoked potentials (VEPs) to pattern-reversal and motion-onset stimuli. Such changes serve as indices of visual information processing in the primary and associative areas in a group of recently abstaining MAP abusers (5 females, 18 males, MAP abuse 5.3 +/- 2.8 years) and in 23 age- and gender-paired controls. RESULTS: We did not find differences between the groups in visual acuity. In the group of MAP abusers we observed an attenuation of the early responses around 80 ms and a prolongation of the P1 peak latency after the reversal of high spatial frequency checkerboards (10 and 20 arcmin checks). Furthermore, an attenuation of the latter positive response (170-250 ms) was observed among all the stimuli in parieto-frontal derivations for the MAP abusers. CONCLUSIONS: This is the first report suggesting a slowing and attenuation of VEP responses during visual processing in abstaining methamphetamine abusers.
- MeSH
- Adult MeSH
- Humans MeSH
- Methamphetamine adverse effects MeSH
- Young Adult MeSH
- Amphetamine-Related Disorders physiopathology MeSH
- Motion Perception physiology MeSH
- Visual Pathways physiopathology MeSH
- Evoked Potentials, Visual physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Methamphetamine MeSH
We explored the effect of repeated visual stimulation on motion-onset visual evoked potentials (M-VEPs) during 25 min recording sessions in 10 subjects. The aim of the experiment was to determine influence of global motion adaptation (without motion-aftereffect) on intra-individual variability of M-VEPs and to suggest an optimal recording design for clinical examination. In addition to well described middle-time sensory adaptation, we also observed a long-time effect on motion specific N2 peak (155 ms). The N2 peak exhibited a strong relationship between its latency and inter-peak amplitude to the duration of recording in occipito-parietal derivations. In addition to the middle-term adaptation, N2 peak latency was prolonged by 10 ms and amplitude was attenuated by 30% with respect to the start of the experiment. An exponential model was employed to describe the dependency. The model can be used to reduce intra-individual variability during examination. Observed resemblance between the measured electrophysiological values and already published metabolic changes (glucose and oxygen utilization) during brain processing of visual information is discussed.
- MeSH
- Adult MeSH
- Adaptation, Physiological * MeSH
- Habituation, Psychophysiologic physiology MeSH
- Data Interpretation, Statistical MeSH
- Middle Aged MeSH
- Humans MeSH
- Least-Squares Analysis MeSH
- Reaction Time MeSH
- Reproducibility of Results MeSH
- Photic Stimulation MeSH
- Fatigue physiopathology MeSH
- Motion Perception physiology MeSH
- Evoked Potentials, Visual * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH