Nejvíce citovaný článek - PubMed ID 10732996
Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.
- Klíčová slova
- Brain, Huntingtin, Large animal model, Neuropathology, TgHD,
- MeSH
- bílá hmota patologie ultrastruktura MeSH
- biologické markery metabolismus MeSH
- degenerace nervu patologie MeSH
- geneticky modifikovaná zvířata MeSH
- genotyp MeSH
- hmotnostní úbytek MeSH
- Huntingtonova nemoc patologie MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech MeSH
- motorické korové centrum patologie ultrastruktura MeSH
- myelinová pochva metabolismus MeSH
- nucleus caudatus patologie ultrastruktura MeSH
- prasata MeSH
- protein huntingtin metabolismus MeSH
- proteinové agregáty MeSH
- stárnutí patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- Htt protein, mouse MeSH Prohlížeč
- protein huntingtin MeSH
- proteinové agregáty MeSH
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).
- MeSH
- akvaporin 4 genetika metabolismus MeSH
- astrocyty metabolismus patologie MeSH
- biologický transport MeSH
- draslík metabolismus MeSH
- draslíkové kanály genetika metabolismus MeSH
- edém mozku genetika metabolismus patologie MeSH
- gliový fibrilární kyselý protein MeSH
- glukosa nedostatek MeSH
- konfokální mikroskopie MeSH
- membránové proteiny nedostatek genetika MeSH
- mikrotomie MeSH
- mozková kůra metabolismus patologie MeSH
- myši transgenní MeSH
- myši MeSH
- osmolární koncentrace MeSH
- osmotický tlak MeSH
- promotorové oblasti (genetika) MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- proteiny vázající vápník nedostatek genetika MeSH
- regulace genové exprese MeSH
- signální transdukce MeSH
- stereotaktické techniky MeSH
- svalové proteiny nedostatek genetika MeSH
- techniky tkáňových kultur MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akvaporin 4 MeSH
- Aqp4 protein, mouse MeSH Prohlížeč
- draslík MeSH
- draslíkové kanály MeSH
- enhanced green fluorescent protein MeSH Prohlížeč
- glial fibrillary astrocytic protein, mouse MeSH Prohlížeč
- gliový fibrilární kyselý protein MeSH
- glukosa MeSH
- membránové proteiny MeSH
- proteiny nervové tkáně MeSH
- proteiny vázající vápník MeSH
- svalové proteiny MeSH
- syntrophin alpha1 MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH