Nejvíce citovaný článek - PubMed ID 11228011
Bird schistosomes: do they die in mammalian skin?
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
- Klíčová slova
- Aporocotylidae, Blood flukes, Diplostomidae, Sanguinicolidae, Schistosoma, Schistosomatidae, Skin penetration, Spirorchiidae, Strigeidae, Trematodes,
- MeSH
- infekce červy třídy Trematoda * parazitologie veterinární MeSH
- interakce hostitele a parazita MeSH
- lidé MeSH
- Schistosomatidae genetika MeSH
- stadia vývoje MeSH
- Trematoda fyziologie patogenita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: In Europe, avian schistosomes of the genus Trichobilharzia are the most common etiological agents involved in human cercarial dermatitis (swimmer's itch). Manifested by a skin rash, the condition is caused by an allergic reaction to cercariae of nonhuman schistosomes. Humans are an accidental host in this parasite's life cycle, while water snails are the intermediate, and waterfowl are the final hosts. The study aimed to conduct a molecular and phylogenetic analysis of Trichobilharzia species occurring in recreational waters in North-Eastern Poland. METHODOLOGY: The study area covered three water bodies (Lake Skanda, Lake Ukiel, and Lake Tyrsko) over the summer of 2021. In total, 747 pulmonate freshwater snails (Radix spp., Lymnaea stagnalis) were collected. Each snail was subjected to 1-2 h of light stimulation to induce cercarial expulsion. The phylogenetic analyses of furcocercariae were based on the partial sequence of the ITS region (ITS1, 5.8S rDNA, ITS2 and 28SrDNA). For Radix spp. phylogenetic analyses were based on the ITS-2 region. RESULTS: The prevalence of the Trichobilharzia species infection in snails was 0.5%. Two out of 478 (0.4%) L. stagnaliswere found to be infected with Trichobilharzia szidati. Moreover, two out of 269 (0.7%) snails of the genus Radix were positive for schistosome cercariae. Both snails were identified as Radix auricularia. One of them was infected with Trichobilharzia franki and the other with Trichobilharzia sp. CONCLUSIONS: Molecular identification of avian schistosome species, both at the intermediate and definitive hosts level, constitutes an important source of information on a potential threat and prognosis of local swimmer's itch occurrence, and helps to determine species diversity in a particular area.
- Klíčová slova
- Avian schistosomes, Cercariae, Cercarial dermatitis, Trichobilharzia,
- MeSH
- DNA helmintů genetika MeSH
- fylogeneze * MeSH
- hlemýždi parazitologie MeSH
- infekce červy třídy Trematoda parazitologie veterinární epidemiologie MeSH
- jezera parazitologie MeSH
- lidé MeSH
- Schistosomatidae * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko epidemiologie MeSH
- Názvy látek
- DNA helmintů MeSH
No effective method has yet been developed to prevent the threat posed by the emerging disease-cercarial dermatitis (swimmer's itch), caused by infective cercariae of bird schistosomes (Digenea: Schistosomatidae). In our previous studies, the New Zealand mud snail-Potamopyrgus antipodarum (Gray, 1853; Gastropoda, Tateidae)-was used as a barrier between the miracidia of Trichobilharzia regenti and the target snails Radix balthica. Since the presence of non-indigenous snails reduced the parasite prevalence under laboratory conditions, we posed three new research questions: (1) Do bird schistosomes show totally perfect efficacy for chemotactic swimming behavior? (2) Do the larvae respond to substances emitted by incompatible snail species? (3) Do the excretory-secretory products of incompatible snail species interfere with the search for a compatible snail host? The experiments were carried out in choice-chambers for the miracidia of T. regenti and T. szidati. The arms of the chambers, depending on the variant, were filled with water conditioned by P. antipodarum, water conditioned by lymnaeid hosts, and dechlorinated tap water. Miracidia of both bird schistosome species chose more frequently the water conditioned by snails-including the water conditioned by the incompatible lymnaeid host and the alien species, P. antipodarum. However, species-specific differences were noticed in the behavior of miracidia. T. regenti remained more often inside the base arm rather than in the arm filled with water conditioned by P. antipodarum or the control arm. T. szidati, however, usually left the base arm and moved to the arm filled with water conditioned by P. antipodarum. In conclusion, the non-host snail excretory-secretory products may interfere with the snail host-finding behavior of bird schistosome miracidia and therefore they may reduce the risk of swimmer's itch.
- Klíčová slova
- Chemo-orientation, Lymnaeid hosts, Miracidia, Potamopyrgus antipodarum, Trichobilharzia spp.,
- Publikační typ
- časopisecké články MeSH
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
- Klíčová slova
- Allergy, Diagnosis, Immunity, Schistosome, Skin, Trichobilharzia,
- MeSH
- dermatitida imunologie parazitologie MeSH
- dospělí MeSH
- epidemický výskyt choroby MeSH
- imunoglobulin E krev MeSH
- imunoglobulin G krev MeSH
- imunoglobulin M krev MeSH
- infekce červy třídy Trematoda diagnóza imunologie parazitologie MeSH
- interleukin-4 krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- následné studie MeSH
- protilátky protozoální krev MeSH
- průzkumy a dotazníky MeSH
- rybníky parazitologie MeSH
- Schistosomatidae imunologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- IL4 protein, human MeSH Prohlížeč
- imunoglobulin E MeSH
- imunoglobulin G MeSH
- imunoglobulin M MeSH
- interleukin-4 MeSH
- protilátky protozoální MeSH
Swimmer's itch is a re-emerging human disease caused by bird schistosome cercariae, which can infect bathing or working people in water bodies. Even if cercariae fail after penetrating the human skin, they can cause dangerous symptoms in atypical mammal hosts. One of the natural methods to reduce the presence of cercariae in the environment could lie in the introduction of non-host snail species to the ecosystem, which is known as the "dilution" or "decoy" effect. The caenogastropod Potamopyrgus antipodarum-an alien in Europe-could be a good candidate against swimmer's itch because of its apparent resistance to invasion by European bird schistosome species and its high population density. As a pilot study on this topic, we have carried out a laboratory experiment on how P. antipodarum influences the infestation of the intermediate host Radix balthica (a native lymnaeid) by the bird schistosome Trichobilharzia regenti. We found that the co-exposure of 200 P. antipodarum individuals per one R. balthica to the T. regenti miracidia under experimental conditions makes the infestation ineffective. Our results show that a non-host snail population has the potential to interfere with the transmission of a trematode via suitable snail hosts.
- Klíčová slova
- Miracidia, Potamopyrgus antipodarum, Radix balthica, Trichobilharzia regenti, “Decoy effect”,
- Publikační typ
- časopisecké články MeSH
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
- MeSH
- glykokalyx metabolismus MeSH
- glykosylace MeSH
- Schistosomatidae metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nasal bird schistosomes can cause bilharziosis in birds and have the potential to cause swimmer's itch in humans. We determined the prevalence of bird schistosomes in 106 mallards (Anas plathyrhynchos) from 11 water sources in Germany from 2014. Dissections were performed focusing on parasitic infections of the neural system. Infections with Trichobilharzia regenti (Horák et al. 1998) were found in 21% of the birds (n = 22), whereas Bilharziella polonica (Kowalewski 1895) were found between the brain membranes (meninges) and the brain, in the spinal cord or in the intestine of 12% of the mallards (n = 13). No significant influence of sex, age, and body condition between infected and non-infected animals was observed. Our study provides the first description of B. polonica from the neural system of birds and provides an epidemiological understanding of a parasite of human health concern.
- Klíčová slova
- Bilharziella polonica, Bird schistosomes, Mallard, Trichobilharzia regenti,
- MeSH
- divoká zvířata parazitologie MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- kachny parazitologie MeSH
- lidé MeSH
- nemoci ptáků parazitologie MeSH
- nervový systém parazitologie MeSH
- Schistosoma genetika izolace a purifikace fyziologie MeSH
- Schistosomatidae genetika izolace a purifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo MeSH
Digenean trematodes are common and abundant in aquatic habitats and their free-living larvae, the cercariae, have recently been recognized as important components of ecosystems in terms of comprising a significant proportion of biomass and in having a potentially strong influence on food web dynamics. One strategy to enhance their transmission success is to produce high numbers of cercariae which are available during the activity peak of the next host. In laboratory experiments with 13 Lymnaea stagnalis snails infected with Trichobilharzia szidati the average daily emergence rate per snail was determined as 2,621 cercariae, with a maximum of 29,560. During a snail's lifetime this summed up to a mass equivalent of or even exceeding the snail's own body mass. Extrapolated for the eutrophic pond where the snails were collected, annual T. szidati biomass may reach 4.65 tons, a value equivalent to a large Asian elephant. Emission peaks were observed after the onset of illumination, indicating emission synchronizing with the high morning activities of the definitive hosts, ducks. However, high cercarial emission is possible throughout the day under favorable lightning conditions. Therefore, although bird schistosomes, such as T. szidati constitute only a fraction of the diverse trematode communities in the studied aquatic ecosystem, their cercariae can still pose a considerable risk for humans of getting cercarial dermatitis (swimmer's itch) due to the high number of cercariae emitted from infected snails.
- MeSH
- biomasa MeSH
- cerkárie růst a vývoj MeSH
- chronobiologické jevy MeSH
- ekosystém MeSH
- Lymnaea parazitologie fyziologie MeSH
- neparametrická statistika MeSH
- plavání MeSH
- Schistosomatidae růst a vývoj MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- biodiverzita MeSH
- epidemický výskyt choroby MeSH
- hostitelská specificita MeSH
- lidé MeSH
- nemoci ptáků parazitologie přenos MeSH
- parazitární onemocnění kůže epidemiologie imunologie parazitologie prevence a kontrola MeSH
- ptáci MeSH
- schistosomóza epidemiologie imunologie parazitologie prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Bird schistosomes, besides being responsible for bird schistosomiasis, are known as causative agents of cercarial dermatitis. Cercarial dermatitis develops after repeated contact with cercariae, mainly of the genus Trichobilharzia, and was described as a type I, immediate hypersensitivity response, followed by a late phase reaction. The immune response is Th2 polarized. Primary infection leads to an inflammatory reaction that is insufficient to eliminate the schistosomes and schistosomula may continue its migration through the body of avian as well as mammalian hosts. However, reinfections of experimental mice revealed an immune reaction leading to destruction of the majority of schistosomula in the skin. Infection with the nasal schistosome Trichobilharzia regenti probably represents a higher health risk than infections with visceral schistosomes. After the skin penetration by the cercariae, parasites migrate via the peripheral nerves, spinal cord to the brain, and terminate their life cycle in the nasal mucosa of waterfowl where they lay eggs. T. regenti can also get over skin barrier and migrate to CNS of experimental mice. During heavy infections, neuroinfections of both birds and mammals lead to the development of a cellular immune response and axonal damage in the vicinity of the schistosomulum. Such infections are manifest by neuromotor disorders.
- Publikační typ
- časopisecké články MeSH