Nejvíce citovaný článek - PubMed ID 16351919
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
- Klíčová slova
- Aporocotylidae, Blood flukes, Diplostomidae, Sanguinicolidae, Schistosoma, Schistosomatidae, Skin penetration, Spirorchiidae, Strigeidae, Trematodes,
- MeSH
- infekce červy třídy Trematoda * parazitologie veterinární MeSH
- interakce hostitele a parazita MeSH
- lidé MeSH
- Schistosomatidae genetika MeSH
- stadia vývoje MeSH
- Trematoda fyziologie patogenita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The emergence of cercariae from infected mollusks is considered one of the most important adaptive strategies for maintaining the trematode life cycle. Short transmission opportunities of cercariae are often compensated by periodic daily rhythms in the cercarial release. However, there are virtually no data on the cercarial emergence of bird schistosomes from freshwater ecosystems in northern latitudes. We investigated the daily cercarial emergence rhythms of the bird schistosome Trichobilharzia sp. "peregra" from the snail host Radix balthica in a subarctic lake under both natural and laboratory seasonal conditions. We demonstrated a circadian rhythm with the highest emergence during the morning hours, being seasonally independent of the photo- and thermo-period regimes of subarctic summer and autumn, as well as relatively high production of cercariae at low temperatures typical of northern environments. These patterns were consistent under both field and laboratory conditions. While light intensity triggered and prolonged cercarial emergence, the temperature had little effect on cercarial rhythms but regulated seasonal output rates. This suggests an adaptive strategy of bird schistosomes to compensate for the narrow transmission window. Our results fill a gap in our knowledge of the transmission dynamics and success of bird schistosomes under high latitude conditions that may serve as a basis for elucidating future potential risks and implementing control measures related to the spread of cercarial dermatitis due to global warming.
- Klíčová slova
- Trichobilharzia, bird schistosome, cercariae, emergence, light, temperature, trematodes,
- Publikační typ
- časopisecké články MeSH
The present study provides an overview of the structures linked to fish host finding, recognition, and invasion of one of the most commonly occurring morphotypes among trematodes, furcocercariae. For this, we use free-swimming cercariae of the strigeid Cardiocephaloides longicollis (Rudolphi 1819) Dubois, 1982. Their elongated cercarial body and bifurcated tail are covered by a tegument with an irregular surface, showing numerous folds arranged in different directions and a typical syncytial organization. Both the body and the bifurcated tail are covered with short spines, rose-thorn shaped, as well as four types of sensory papillae, distinguished by the presence or absence of a cilium, its length, and their position on the cercarial body. These papillae are especially important for free-living stages that rely on external stimuli to locate and adhere to the host. A specialized anterior organ is located at the anterior part of the cercariae and is encircled by a triangle-shaped group of enlarged pre-oral spines followed by a transverse row of enlarged post-oral spines that, together with the sensory papillae, allow active finding, recognition, and penetration into fish. The ventral sucker, covered with inner-oriented spines, sensory papillae, and cilia, helps during this process. The cercariae of C. longicollis possess three types of gland cells (a head gland and two types of penetration glands), each containing different types of secretory granules that play a role in host invasion. The protonephridial excretory system consists of an excretory bladder, a system of collecting tubules, flame cells, and two excretory pores in the middle of each furcae, which serve to control osmoregulation in their marine environment, as well as to eliminate metabolic waste. Together with the four types of sensory endings, the central ganglion forms the nervous system. Our results add novel information on the ultrastructure of strigeid furcocercariae, being essential to interpret these data in relation of their functional role to better understand the transmission and penetration strategies that cercariae display to infect their fish hosts.
- Klíčová slova
- Free-swimming larvae, TEM, Transmission strategy, Trematode parasite,
- MeSH
- cerkárie MeSH
- mikroskopie elektronová rastrovací MeSH
- ryby MeSH
- Trematoda * ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Phenotypic polymorphism is a commonly observed phenomenon in nature, but extremely rare in free-living stages of parasites. We describe a unique case of somatic polymorphism in conspecific cercariae of the bird schistosome Trichobilharzia sp. "peregra", in which two morphs, conspicuously different in their size, were released from a single Radix balthica snail. A detailed morphometric analysis that included multiple morphological parameters taken from 105 live and formalin-fixed cercariae isolated from several naturally infected snails provided reliable evidence for a division of all cercariae into two size groups that contained either large or small individuals. Large morph (total body length of 1368 and 1339 μm for live and formalin-fixed samples, respectively) differed significantly nearly in all morphological characteristics compared to small cercariae (total body length of 976 and 898 μm for live and formalin samples, respectively), regardless of the fixation method. Furthermore, we observed that small individuals represent the normal/commonly occurring phenotype in snail populations. The probable causes and consequences of generating an alternative, much larger phenotype in the parasite infrapopulation are discussed in the context of transmission ecology as possible benefits and disadvantages facilitating or preventing the successful completion of the life cycle.
- Klíčová slova
- Trichobilharzia, bird schistosome, cercariae, phenotype, polymorphism, trematodes,
- Publikační typ
- časopisecké články MeSH
No effective method has yet been developed to prevent the threat posed by the emerging disease-cercarial dermatitis (swimmer's itch), caused by infective cercariae of bird schistosomes (Digenea: Schistosomatidae). In our previous studies, the New Zealand mud snail-Potamopyrgus antipodarum (Gray, 1853; Gastropoda, Tateidae)-was used as a barrier between the miracidia of Trichobilharzia regenti and the target snails Radix balthica. Since the presence of non-indigenous snails reduced the parasite prevalence under laboratory conditions, we posed three new research questions: (1) Do bird schistosomes show totally perfect efficacy for chemotactic swimming behavior? (2) Do the larvae respond to substances emitted by incompatible snail species? (3) Do the excretory-secretory products of incompatible snail species interfere with the search for a compatible snail host? The experiments were carried out in choice-chambers for the miracidia of T. regenti and T. szidati. The arms of the chambers, depending on the variant, were filled with water conditioned by P. antipodarum, water conditioned by lymnaeid hosts, and dechlorinated tap water. Miracidia of both bird schistosome species chose more frequently the water conditioned by snails-including the water conditioned by the incompatible lymnaeid host and the alien species, P. antipodarum. However, species-specific differences were noticed in the behavior of miracidia. T. regenti remained more often inside the base arm rather than in the arm filled with water conditioned by P. antipodarum or the control arm. T. szidati, however, usually left the base arm and moved to the arm filled with water conditioned by P. antipodarum. In conclusion, the non-host snail excretory-secretory products may interfere with the snail host-finding behavior of bird schistosome miracidia and therefore they may reduce the risk of swimmer's itch.
- Klíčová slova
- Chemo-orientation, Lymnaeid hosts, Miracidia, Potamopyrgus antipodarum, Trichobilharzia spp.,
- Publikační typ
- časopisecké články MeSH
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
- MeSH
- glykokalyx metabolismus MeSH
- glykosylace MeSH
- Schistosomatidae metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Digenean trematodes are common and abundant in aquatic habitats and their free-living larvae, the cercariae, have recently been recognized as important components of ecosystems in terms of comprising a significant proportion of biomass and in having a potentially strong influence on food web dynamics. One strategy to enhance their transmission success is to produce high numbers of cercariae which are available during the activity peak of the next host. In laboratory experiments with 13 Lymnaea stagnalis snails infected with Trichobilharzia szidati the average daily emergence rate per snail was determined as 2,621 cercariae, with a maximum of 29,560. During a snail's lifetime this summed up to a mass equivalent of or even exceeding the snail's own body mass. Extrapolated for the eutrophic pond where the snails were collected, annual T. szidati biomass may reach 4.65 tons, a value equivalent to a large Asian elephant. Emission peaks were observed after the onset of illumination, indicating emission synchronizing with the high morning activities of the definitive hosts, ducks. However, high cercarial emission is possible throughout the day under favorable lightning conditions. Therefore, although bird schistosomes, such as T. szidati constitute only a fraction of the diverse trematode communities in the studied aquatic ecosystem, their cercariae can still pose a considerable risk for humans of getting cercarial dermatitis (swimmer's itch) due to the high number of cercariae emitted from infected snails.
- MeSH
- biomasa MeSH
- cerkárie růst a vývoj MeSH
- chronobiologické jevy MeSH
- ekosystém MeSH
- Lymnaea parazitologie fyziologie MeSH
- neparametrická statistika MeSH
- plavání MeSH
- Schistosomatidae růst a vývoj MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- biodiverzita MeSH
- epidemický výskyt choroby MeSH
- hostitelská specificita MeSH
- lidé MeSH
- nemoci ptáků parazitologie přenos MeSH
- parazitární onemocnění kůže epidemiologie imunologie parazitologie prevence a kontrola MeSH
- ptáci MeSH
- schistosomóza epidemiologie imunologie parazitologie prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cercarial dermatitis (swimmer's itch) is a common non-communicable water-borne disease. It is caused by penetration of the skin by larvae (cercariae) of schistosomatid flukes and develops as a maculopapular skin eruption after repeated contacts with the parasites. The number of outbreaks of the disease is increasing, and cercarial dermatitis can therefore be considered as an emerging problem. Swimmer's itch is mostly associated with larvae of the bird schistosomes of Trichobilharzia spp. Recent results have shown that mammalian infections (including man) manifest themselves as an allergic reaction which is able to trap and eliminate parasites in the skin. Studies on mammals experimentally infected by bird schistosome cercariae revealed, however, that during primary infection, parasites are able to escape from the skin to the lungs or central nervous system. This review covers basic information on detection of the infectious agents in the field and the clinical course of the disease, including other pathologies which may develop after infection by cercariae, and diagnosis of the disease.
- MeSH
- centrální nervový systém mikrobiologie MeSH
- cerkárie imunologie MeSH
- dermatitida diagnóza imunologie parazitologie MeSH
- kůže mikrobiologie patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- plavání MeSH
- plíce mikrobiologie MeSH
- Schistosoma MeSH
- schistosomóza komplikace diagnóza imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Studies on life cycles of trematodes have a long tradition in Germany; (Odening 1978) listed a total of 177 trematodes, which can potentially complete their life cycles in German inland waters. However, almost no recent data on the occurrence of larval stages in molluscs are available. Therefore, a survey of trematodes in Southeast Germany was carried out in 2004. A total of 31 species of ten families (29 species of cercariae, seven species of metacercariae, and five species found of both) were found in 311 (4.9%) molluscs of 15 species. The dominant cercariae were Plagiorchis elegans, Echinoparyphium aconiatum, Opisthioglyphe ranae, and Diplostomum pseudospathaceum. Echinoparyphium pseudorecurvatum is reported, for the first time, under its valid scientific name from Germany. In previous studies from the same region, 88 species of cercariae of 16 families were found in 19 species of molluscs (52 cercariae with valid names and 36 not identified to species level). It is proposed that there is still a very similar spectrum of the most common species of cercariae typical for Central Europe as found 20, but also 100-150 years ago.
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- larva MeSH
- měkkýši parazitologie MeSH
- řeky parazitologie MeSH
- stadia vývoje MeSH
- Trematoda růst a vývoj izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH