Nejvíce citovaný článek - PubMed ID 11330722
Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.
- MeSH
- acetofenony metabolismus MeSH
- aerobióza MeSH
- Bacteria genetika metabolismus MeSH
- biodegradace MeSH
- cinnamáty metabolismus MeSH
- dichlorethyleny metabolismus MeSH
- fenethylalkohol metabolismus MeSH
- fenoly metabolismus MeSH
- fylogeneze MeSH
- hydroxybenzoáty metabolismus MeSH
- látky znečišťující půdu metabolismus MeSH
- mikrobiální společenstva genetika MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S MeSH
- rostliny metabolismus MeSH
- sekundární metabolismus MeSH
- toluen metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-dichloroethylene MeSH Prohlížeč
- acetofenony MeSH
- acetophenone MeSH Prohlížeč
- cinnamáty MeSH
- cinnamic acid MeSH Prohlížeč
- dichlorethyleny MeSH
- fenethylalkohol MeSH
- fenoly MeSH
- hydroxybenzoáty MeSH
- látky znečišťující půdu MeSH
- phenolic acid MeSH Prohlížeč
- RNA ribozomální 16S MeSH
- toluen MeSH
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
- Klíčová slova
- Biodegradation, Biological reductive dehalogenation, Cis-1,2-dichloroethene, Co-metabolic degradation, Organohalide respiration, Tetrachloroethene, Trichloroethene, Vinyl chloride,
- MeSH
- aerobní bakterie metabolismus MeSH
- Bacteria metabolismus MeSH
- biodegradace * MeSH
- halogenace MeSH
- tetrachlorethylen metabolismus MeSH
- vinylchlorid metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- tetrachlorethylen MeSH
- vinylchlorid MeSH