Nejvíce citovaný článek - PubMed ID 15487929
Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.
- MeSH
- acetofenony metabolismus MeSH
- aerobióza MeSH
- Bacteria genetika metabolismus MeSH
- biodegradace MeSH
- cinnamáty metabolismus MeSH
- dichlorethyleny metabolismus MeSH
- fenethylalkohol metabolismus MeSH
- fenoly metabolismus MeSH
- fylogeneze MeSH
- hydroxybenzoáty metabolismus MeSH
- látky znečišťující půdu metabolismus MeSH
- mikrobiální společenstva genetika MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S MeSH
- rostliny metabolismus MeSH
- sekundární metabolismus MeSH
- toluen metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-dichloroethylene MeSH Prohlížeč
- acetofenony MeSH
- acetophenone MeSH Prohlížeč
- cinnamáty MeSH
- cinnamic acid MeSH Prohlížeč
- dichlorethyleny MeSH
- fenethylalkohol MeSH
- fenoly MeSH
- hydroxybenzoáty MeSH
- látky znečišťující půdu MeSH
- phenolic acid MeSH Prohlížeč
- RNA ribozomální 16S MeSH
- toluen MeSH
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
- Klíčová slova
- Biodegradation, Biological reductive dehalogenation, Cis-1,2-dichloroethene, Co-metabolic degradation, Organohalide respiration, Tetrachloroethene, Trichloroethene, Vinyl chloride,
- MeSH
- aerobní bakterie metabolismus MeSH
- Bacteria metabolismus MeSH
- biodegradace * MeSH
- halogenace MeSH
- tetrachlorethylen metabolismus MeSH
- vinylchlorid metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- tetrachlorethylen MeSH
- vinylchlorid MeSH
Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants' degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.
- Klíčová slova
- bacterial degradation, bioremediation, contaminated soil, pentachlorophenol, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, wood preservation,
- MeSH
- Bacteria metabolismus MeSH
- benzofurany analýza metabolismus MeSH
- biodegradace * MeSH
- biotransformace MeSH
- látky znečišťující půdu analýza metabolismus MeSH
- lidé MeSH
- pentachlorfenol metabolismus MeSH
- polychlorované dibenzodioxiny metabolismus MeSH
- půda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- benzofurany MeSH
- látky znečišťující půdu MeSH
- pentachlorfenol MeSH
- polychlorované dibenzodioxiny MeSH
- půda MeSH
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.
- MeSH
- biodegradace * MeSH
- fylogeneze MeSH
- izotopové značení metody MeSH
- látky znečišťující životní prostředí metabolismus MeSH
- metagenomika metody trendy MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- látky znečišťující životní prostředí MeSH
- uhlík MeSH