Nejvíce citovaný článek - PubMed ID 11598941
Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells
From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.
- Klíčová slova
- DNA damage, DNA double strand breaks (DSBs), DNA repair, DNA repair foci, cancer radiotherapy, damage to lysosomes, metal nanoparticles, single-molecule localization microscopy (SMLM), super-resolution microscopy, tumor cell radiosensitization,
- MeSH
- dvouřetězcové zlomy DNA účinky záření MeSH
- gadolinium chemie MeSH
- HeLa buňky MeSH
- konfokální mikroskopie MeSH
- kovové nanočástice chemie terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- poškození DNA účinky záření MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
- zlato MeSH
In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.
- MeSH
- chromatin účinky léků genetika MeSH
- dimethylsulfoxid farmakologie MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- fibroblasty MeSH
- kryoprezervace metody MeSH
- kryoprotektivní látky farmakologie MeSH
- kůže cytologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- S fáze účinky léků MeSH
- viabilita buněk účinky léků genetika MeSH
- zmrazování škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- chromatin MeSH
- dimethylsulfoxid MeSH
- kryoprotektivní látky MeSH
BACKGROUND: Tumor targeting of radiotherapy represents a great challenge. The addition of multimodal nanoparticles, such as 3 nm gadolinium-based nanoparticles (GdBNs), has been proposed as a promising strategy to amplify the effects of radiation in tumors and improve diagnostics using the same agents. This singular property named theranostic is a unique advantage of GdBNs. It has been established that the amplification of radiation effects by GdBNs appears due to fast electronic processes. However, the influence of these nanoparticles on cells is not yet understood. In particular, it remains dubious how nanoparticles activated by ionizing radiation interact with cells and their constituents. A crucial question remains open of whether damage to the nucleus is necessary for the radiosensitization exerted by GdBNs (and other nanoparticles). METHODS: We studied the effect of GdBNs on the induction and repair of DNA double-strand breaks (DSBs) in the nuclear DNA of U87 tumor cells irradiated with γ-rays. For this purpose, we used currently the most sensitive method of DSBs detection based on high-resolution confocal fluorescence microscopy coupled with immunodetection of two independent DSBs markers. RESULTS: We show that, in the conditions where GdBNs amplify radiation effects, they remain localized in the cytoplasm, i.e. do not penetrate into the nucleus. In addition, the presence of GdBNs in the cytoplasm neither increases induction of DSBs by γ-rays in the nuclear DNA nor affects their consequent repair. CONCLUSIONS: Our results suggest that the radiosensitization mediated by GdBNs is a cytoplasmic event that is independent of the nuclear DNA breakage, a phenomenon commonly accepted as the explanation of biological radiation effects. Considering our earlier recognized colocalization of GdBNs with the lysosomes and endosomes, we revolutionary hypothesize here about these organelles as potential targets for (some) nanoparticles. If confirmed, this finding of cytoplasmically determined radiosensitization opens new perspectives of using nano-radioenhancers to improve radiotherapy without escalating the risk of pathologies related to genetic damage.
- Klíčová slova
- DNA double-strand breaks, DNA repair, Gadolinium, Nanomedicine, Nanoparticles, Radiosensitization, Radiotherapy, Theranostic,
- MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- gadolinium toxicita MeSH
- glioblastom metabolismus MeSH
- kovové nanočástice toxicita MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oprava DNA účinky léků MeSH
- poškození DNA účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gadolinium MeSH
During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF) and endonuclease G (endoG). Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID). We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.
- MeSH
- apoptóza * MeSH
- biologické modely MeSH
- endonukleasy metabolismus MeSH
- fluorescenční mikroskopie metody MeSH
- kaspasy metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- nádorové buněčné linie MeSH
- počítačová simulace MeSH
- proteomika metody MeSH
- software MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endonukleasy MeSH
- kaspasy MeSH
To determine the influence of increased gene expression and amplification in colorectal carcinoma on chromatin structure, the nuclear distances between pairs of bacterial artificial chromosome (BAC) clones with genomic separation from 800 to 29,000 kb were measured and compared between the tumor and parallel epithelial cells of six patients. The nuclear distances were measured between the loci in chromosomal bands 7p22.3-7p21.3; 7q35-7q36.3; 11p15.5-11p15.4; 20p13; 20p12.2; 20q11.21 and 20q12 where increased expression had been found in all types of colorectal carcinoma. The loci were visualized by three-dimensional fluorescence in situ hybridization using 22 BAC clones. Our results show that for short genomic separations, mean nuclear distance increases linearly with increased genomic separation. The results for some pairs of loci fell outside this linear slope, indicating the existence of different levels of chromatin folding. For the same genomic separations the nuclear distances were frequently shorter for tumor as compared with epithelial cells. Above the initial growing phase of the nuclear distances, a plateau phase was observed in both cell types where the increase in genomic separation was not accompanied by an increase in nuclear distance. The ratio of the mean nuclear distances between the corresponding loci in tumor and epithelium cells decreases with increasing amplification of loci. Our results further show that the large-scale chromatin folding might differ for specific regions of chromosomes and that it is basically preserved in tumor cells in spite of the amplification of many loci.
- MeSH
- amplifikace genu genetika MeSH
- buněčné jádro genetika ultrastruktura MeSH
- chromatin genetika ultrastruktura MeSH
- DNA nádorová genetika MeSH
- DNA sondy MeSH
- dospělí MeSH
- epitelové buňky patologie MeSH
- hybridizace in situ fluorescenční MeSH
- kolorektální nádory genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy genetika ultrastruktura MeSH
- pruhování chromozomů MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA nádorová MeSH
- DNA sondy MeSH
The spatial arrangement of some genetic elements relative to chromosome territories and in parallel with the cell nucleus was investigated in human lymphocytes. The structure of the chromosome territories was studied in chromosomes containing regions (clusters) of highly expressed genes (HSA 9, 17) and those without such clusters (HSA 8, 13). In chromosomes containing highly expressed regions, the elements pertaining to these regions were found close to the centre of the nucleus on the inner sides of chromosome territories; those pertaining to regions with low expression were localized close to the nuclear membrane on the opposite sides of the territories. In chromosomes with generally low expression (HSA 8, 13), the elements investigated were found symmetrically distributed over the territories. Based on the investigations of the chromosome structure, the following conclusions are suggested: (1) Chromosome territories have a non-random internal 3D structure with defined average mutual positions between elements. For example, RARalpha, TP53 and Iso-q of HSA 17 are nearer to each other than they are to the HSA 17 centromere. (2) The structure of a chromosome territory reflects the number and chromosome location of clusters of highly expressed genes. (3) Chromosome territories behave to some extent as solid bodies: if the territory is found closer to the nuclear centre, the individual genetic elements of this chromosome are also found, on average, closer the centre of the nucleus. (4) The positions of centromeres are, on average, nearer to the fluorescence weight centre of the territory (FWCT) than to genes. (5) Active genes are not found near the centromeres of their own territory. A simple model of the structure of chromosome territory is proposed.
- MeSH
- buněčné jádro genetika MeSH
- centromera genetika MeSH
- euchromatin genetika MeSH
- geny MeSH
- heterochromatin genetika MeSH
- hybridizace in situ fluorescenční MeSH
- jaderný obal genetika MeSH
- kompartmentace buňky MeSH
- lidé MeSH
- lidské chromozomy, pár 17 ultrastruktura MeSH
- lidské chromozomy ultrastruktura MeSH
- lymfocyty diagnostické zobrazování MeSH
- metoda Monte Carlo MeSH
- modely genetické MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu MeSH
- ultrasonografie MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- euchromatin MeSH
- heterochromatin MeSH