Nejvíce citovaný článek - PubMed ID 11684085
Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
- Klíčová slova
- CD9, IgE receptor, LAT, NTAL, membrane microdomains, plasma membrane, signal transduction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved.
- MeSH
- anafylaxe genetika MeSH
- buňky kostní dřeně metabolismus fyziologie MeSH
- C-terminální Src kinasa MeSH
- degranulace buněk MeSH
- fosfolipasy typu C metabolismus MeSH
- fosfoproteiny genetika MeSH
- fosforylace MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- kinasa Syk MeSH
- malá interferující RNA MeSH
- mastocyty metabolismus fyziologie MeSH
- membránové proteiny genetika MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- protoonkogenní proteiny c-fyn biosyntéza MeSH
- protoonkogenní proteiny c-kit metabolismus MeSH
- receptory IgE metabolismus MeSH
- RNA interference MeSH
- signální transdukce MeSH
- skupina kinas odvozených od src-genu biosyntéza metabolismus MeSH
- tyrosinkinasy metabolismus MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- C-terminální Src kinasa MeSH
- fosfolipasy typu C MeSH
- fosfoproteiny MeSH
- Fyn protein, mouse MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- kinasa Syk MeSH
- lyn protein-tyrosine kinase MeSH Prohlížeč
- malá interferující RNA MeSH
- membránové proteiny MeSH
- Pag1 protein, mouse MeSH Prohlížeč
- protoonkogenní proteiny c-fyn MeSH
- protoonkogenní proteiny c-kit MeSH
- receptory IgE MeSH
- skupina kinas odvozených od src-genu MeSH
- Syk protein, mouse MeSH Prohlížeč
- tyrosinkinasy MeSH
- vápník MeSH
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
- Klíčová slova
- Fyn, Lck, TCR triggering, compartmentalization, heavy and light DRMs, membrane microdomains, spatio-temporal regulation,
- Publikační typ
- časopisecké články MeSH