Nejvíce citovaný článek - PubMed ID 11734430
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
- Klíčová slova
- ARDS, Anti-inflammation, Antibacterial, Antiviral, COVID-19, Cancer, Chronic diseases, Coumarins, Cytokine storm, Disease management, Flavonoids, Health economy, Health policy, Immunity, Inflammation, Lung damage, Phenolic acids, Phenolic compounds, Phytochemicals, Predictive preventive personalized medicine (3PM/PPPM), Risk assessment, Signaling pathways, Stilbenoids, Therapy efficacy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase.
- Klíčová slova
- anti-allergic effect, anti-inflammatory properties, flavonoids, immune response, quercetin,
- MeSH
- antioxidancia metabolismus terapeutické užití MeSH
- Brassica chemie MeSH
- česneky chemie MeSH
- flavonoly imunologie metabolismus terapeutické užití MeSH
- histamin imunologie metabolismus MeSH
- imunoglobulin E biosyntéza MeSH
- interleukin-4 biosyntéza imunologie MeSH
- lidé MeSH
- přirozená imunita účinky léků MeSH
- quercetin imunologie metabolismus terapeutické užití MeSH
- rovnováha Th1-Th2 účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- flavonoly MeSH
- histamin MeSH
- IL4 protein, human MeSH Prohlížeč
- imunoglobulin E MeSH
- interleukin-4 MeSH
- quercetin MeSH