Nejvíce citovaný článek - PubMed ID 11976486
Toxic dipeptide-repeat (DPR) proteins are produced from expanded G4C2 repeats in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥20 repeats inhibit the ribosome's peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryogenic electron microscopy (cryo-EM) reveals that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center (PTC). Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with poly-PR and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.
- MeSH
- amyotrofická laterální skleróza * genetika metabolismus MeSH
- dipeptidy metabolismus MeSH
- elektronová kryomikroskopie MeSH
- frontotemporální demence * genetika metabolismus MeSH
- lidé MeSH
- protein C9orf72 genetika metabolismus MeSH
- proteiny genetika metabolismus MeSH
- ribozomy metabolismus MeSH
- transferasy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- C9orf72 protein, human MeSH Prohlížeč
- dipeptidy MeSH
- protein C9orf72 MeSH
- proteiny MeSH
- transferasy MeSH
During translation, a conserved GTPase elongation factor-EF-G in bacteria or eEF2 in eukaryotes-translocates tRNA and mRNA through the ribosome. EF-G has been proposed to act as a flexible motor that propels tRNA and mRNA movement, as a rigid pawl that biases unidirectional translocation resulting from ribosome rearrangements, or by various combinations of motor- and pawl-like mechanisms. Using time-resolved cryo-EM, we visualized GTP-catalyzed translocation without inhibitors, capturing elusive structures of ribosome•EF-G intermediates at near-atomic resolution. Prior to translocation, EF-G binds near peptidyl-tRNA, while the rotated 30S subunit stabilizes the EF-G GTPase center. Reverse 30S rotation releases Pi and translocates peptidyl-tRNA and EF-G by ~20 Å. An additional 4-Å translocation initiates EF-G dissociation from a transient ribosome state with highly swiveled 30S head. The structures visualize how nearly rigid EF-G rectifies inherent and spontaneous ribosomal dynamics into tRNA-mRNA translocation, whereas GTP hydrolysis and Pi release drive EF-G dissociation.
- MeSH
- aminoacyl-tRNA metabolismus MeSH
- elektronová kryomikroskopie * MeSH
- elongační faktor G chemie metabolismus MeSH
- Escherichia coli chemie metabolismus MeSH
- fosfáty metabolismus MeSH
- guanosintrifosfát chemie metabolismus MeSH
- malé podjednotky ribozomu bakteriální chemie metabolismus MeSH
- messenger RNA metabolismus MeSH
- proteosyntéza MeSH
- ribozomy chemie metabolismus MeSH
- RNA transferová metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aminoacyl-tRNA MeSH
- elongační faktor G MeSH
- fosfáty MeSH
- guanosintrifosfát MeSH
- messenger RNA MeSH
- RNA transferová MeSH
- tRNA, peptidyl- MeSH Prohlížeč
Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. How and where in the elongation cycle +1-frameshifting occurs remains poorly understood. We describe seven ~3.5-Å-resolution cryo-EM structures of 70S ribosome complexes, allowing visualization of elongation and translocation by the GTPase elongation factor G (EF-G). Four structures with a + 1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G•GDPCP, the tRNA shifts to the +1-frame near the P site, rendering the freed mRNA base to bulge between the P and E sites and to stack on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during tRNA-mRNA translocation.
- MeSH
- biokatalýza MeSH
- elektronová kryomikroskopie MeSH
- elongace translace peptidového řetězce genetika MeSH
- elongační faktor G chemie genetika metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- messenger RNA chemie genetika metabolismus MeSH
- molekulární modely MeSH
- posun čtecího rámce na ribozómech genetika MeSH
- proteiny z Escherichia coli chemie genetika metabolismus MeSH
- ribozomy genetika metabolismus ultrastruktura MeSH
- RNA ribozomální 16S chemie genetika metabolismus MeSH
- RNA transferová chemie genetika metabolismus MeSH
- tRNA-methyltransferasy genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- elongační faktor G MeSH
- messenger RNA MeSH
- proteiny z Escherichia coli MeSH
- RNA ribozomální 16S MeSH
- RNA transferová MeSH
- TrmD protein, E coli MeSH Prohlížeč
- tRNA-methyltransferasy MeSH
Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.
- MeSH
- biokatalýza MeSH
- biologické modely MeSH
- dimerizace MeSH
- konformace proteinů MeSH
- messenger RNA genetika metabolismus ultrastruktura MeSH
- podjednotky ribozomu metabolismus MeSH
- proteiny z Escherichia coli chemie metabolismus ultrastruktura MeSH
- ribozomy metabolismus ultrastruktura MeSH
- stabilita RNA MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- messenger RNA MeSH
- proteiny z Escherichia coli MeSH
Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA that is delivered by the elongation factor EF-Tu1. To understand the molecular mechanism of this proofreading step it is necessary to visualize GTP-catalysed elongation, which has remained a challenge2-4. Here we use time-resolved cryogenic electron microscopy to reveal 33 ribosomal states after the delivery of aminoacyl-tRNA by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding centre dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis enables the GTPase domain of EF-Tu to extend away, releasing EF-Tu from tRNA. The 30S subunit then locks cognate tRNA in the decoding centre and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase centre. By contrast, the decoding centre fails to lock near-cognate tRNA, enabling the dissociation of near-cognate tRNA both during initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between ribosomes in initial selection states5,6 and in proofreading states, which together govern the efficient rejection of incorrect tRNA.
- MeSH
- elektronová kryomikroskopie * MeSH
- elongační faktor Tu chemie metabolismus ultrastruktura MeSH
- Escherichia coli MeSH
- GTP-fosfohydrolasy metabolismus MeSH
- guanosindifosfát chemie metabolismus MeSH
- guanosintrifosfát chemie metabolismus MeSH
- hydrolýza MeSH
- messenger RNA genetika metabolismus MeSH
- molekulární modely MeSH
- ribozomy chemie metabolismus ultrastruktura MeSH
- RNA transferová chemie genetika metabolismus ultrastruktura MeSH
- rotace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- elongační faktor Tu MeSH
- GTP-fosfohydrolasy MeSH
- guanosindifosfát MeSH
- guanosintrifosfát MeSH
- messenger RNA MeSH
- RNA transferová MeSH