Nejvíce citovaný článek - PubMed ID 12118727
Metabolic characterization of insulin resistance syndrome feature loci in three brown Norway-derived congenic strains
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.
- Klíčová slova
- animal model, congenic rat, metabolic syndrome, nutrigenetics,
- MeSH
- apolipoproteiny M genetika MeSH
- celogenomová asociační studie MeSH
- hypertenze * metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- lidské chromozomy, pár 20 metabolismus MeSH
- mastné kyseliny MeSH
- metabolický syndrom * genetika metabolismus MeSH
- nutrigenomika MeSH
- omezení příjmu potravy MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- proteiny přenášející kationty * genetika MeSH
- sacharosa škodlivé účinky MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- apolipoproteiny M MeSH
- Apom protein, rat MeSH Prohlížeč
- mastné kyseliny MeSH
- proteiny přenášející kationty * MeSH
- sacharosa MeSH
- SLC39A7 protein, human MeSH Prohlížeč
Metabolic syndrome is a prevalent disease resulting from an interplay of genomic component and the exposome. Parental diet has been shown to affect offspring metabolic health via multiple epigenetic mechanisms. Excess carbohydrate intake is one of the driving forces of the obesity and metabolic syndrome pandemics. This review summarizes the evidence for the effects of maternal carbohydrate (fructose, sucrose, glucose) overnutrition on the modulation of metabolic syndrome components in the offspring. Despite substantial discrepancies in experimental design, common effects of maternal carbohydrate overnutrition include increased body weight and hepatic lipid content of the "programmed" offspring. However, the administration of sucrose to several rat models leads to apparently favorable metabolic outcomes. Moreover, there is evidence for the role of genomic background in modulating the metabolic programming effect in the form of nutri-epigenomic interaction. Comprehensive, robust studies are needed to resolve the temporal, sex-specific, genetic, epigenetic and nutritional aspects of parental overnutrition in the intergenerational and transgenerational pathogenesis of metabolic syndrome.
- MeSH
- fruktosa MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metabolický syndrom * genetika MeSH
- nadměrná výživa * komplikace metabolismus MeSH
- rodiče MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fruktosa MeSH
Metabolic syndrome (MetS) is an important cause of worldwide morbidity and mortality. Its complex pathogenesis includes, on the one hand, sedentary lifestyle and high caloric intake, and, on the other hand, there is a clear genetic predisposition. PD (Polydactylous rat) is an animal model of hypertriglyceridemia, insulin resistance, and obesity. To unravel the genetic and pathophysiologic background of this phenotype, we compared morphometric and metabolic parameters as well as liver transcriptomes among PD, spontaneously hypertensive rat, and Brown Norway (BN) strains fed a high-fat diet (HFD). After 4 weeks of HFD, PD rats displayed marked hypertriglyceridemia but without the expected hepatic steatosis. Moreover, the PD strain showed significant weight gain, including increased weight of retroperitoneal and epididymal fat pads, and impaired glucose tolerance. In the liver transcriptome, we found 5480 differentially expressed genes, which were enriched for pathways involved in fatty acid beta and omega oxidation, glucocorticoid metabolism, oxidative stress, complement activation, triacylglycerol and lipid droplets synthesis, focal adhesion, prostaglandin synthesis, interferon signaling, and tricarboxylic acid cycle pathways. Interestingly, the PD strain, contrary to SHR and BN rats, did not express the Acsm3 (acyl-CoA synthetase medium-chain family member 3) gene in the liver. Together, these results suggest disturbances in fatty acid utilization as a molecular mechanism predisposing PD rats to hypertriglyceridemia and fat accumulation.
- Klíčová slova
- Acsm3, high-fat diet, hypertriglyceridemia, insulin resistance, liver transcriptome, metabolic syndrome, polydactylous rat, spontaneously hypertensive rat,
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- exprese genu MeSH
- hypertriglyceridemie krev genetika MeSH
- játra metabolismus MeSH
- koenzym A-ligasy genetika MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- nitrobřišní tuk metabolismus MeSH
- polydaktylie MeSH
- potkani inbrední SHR MeSH
- potkani Wistar MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Acsm3 protein, rat MeSH Prohlížeč
- koenzym A-ligasy MeSH
Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.
- MeSH
- genom MeSH
- glukózový toleranční test MeSH
- hemodynamika MeSH
- lidé MeSH
- lidské chromozomy, pár 16 genetika MeSH
- metabolický syndrom genetika metabolismus patofyziologie MeSH
- metabolom MeSH
- potkani inbrední BN genetika metabolismus fyziologie MeSH
- potkani inbrední SHR genetika metabolismus fyziologie MeSH
- zvířata kongenní genetika metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The plasma profile of major lipoprotein classes and its subdivision into particular fractions plays a crucial role in the pathogenesis of atherosclerosis and is a major predictor of coronary artery disease. Our aim was to identify genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions and lipoprotein particle sizes in the recombinant inbred rat set PXO, in which alleles of two rat models of the metabolic syndrome (SHR and PD inbred strains) segregate together with those from Brown Norway rat strain. Adult male rats of 15 PXO strains (n = 8-13/strain) and two progenitor strains SHR-Lx (n = 13) and BXH2/Cub (n = 18) were subjected to one-week of high-sucrose diet feeding. We performed association analyses of triglyceride (TG) and cholesterol (C) concentrations in 20 lipoprotein fractions and the size of major classes of lipoprotein particles utilizing 704 polymorphic microsatellite markers, the genome-wide significance was validated by 2,000 permutations per trait. Subsequent in silico focusing of the identified quantitative trait loci was completed using a map of over 20,000 single nucleotide polymorphisms. In most of the phenotypes we identified substantial gradient among the strains (e.g. VLDL-TG from 5.6 to 66.7 mg/dl). We have identified 14 loci (encompassing 1 to 65 genes) on rat chromosomes 3, 4, 7, 8, 11 and 12 showing suggestive or significant association to one or more of the studied traits. PXO strains carrying the SHR allele displayed significantly higher values of the linked traits except for LDL-TG and adiposity index. Cholesterol concentrations in large, medium and very small LDL particles were significantly associated to a haplotype block spanning part of a single gene, low density lipoprotein receptor-related protein 1B (Lrp1b). Using genome-wide association we have identified new genetic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the recombinant inbred panel of rat model strains.
- MeSH
- celogenomová asociační studie MeSH
- cholesterol chemie MeSH
- druhová specificita MeSH
- genomika * MeSH
- jednonukleotidový polymorfismus MeSH
- krysa rodu Rattus MeSH
- lipoproteiny chemie MeSH
- triglyceridy chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- lipoproteiny MeSH
- triglyceridy MeSH
Deficiency of fatty acid translocase Cd36 has been shown to have a major role in the pathogenesis of metabolic syndrome in the spontaneously hypertensive rat (SHR). We have tested the hypothesis that the effects of Cd36 mutation on the features of metabolic syndrome are contextually dependent on genomic background. We have derived two new congenic strains by introgression of limited chromosome 4 regions of SHR origin, both including the defective Cd36 gene, into the genetic background of a highly inbred model of insulin resistance and dyslipidemia, polydactylous (PD) rat strain. We subjected standard diet-fed adult males of PD and the congenic PD.SHR4 strains to metabolic, morphometric and transcriptomic profiling. We observed significantly improved glucose tolerance and lower fasting insulin levels in PD.SHR4 congenics than in PD. One of the PD.SHR4 strains showed lower triglyceride concentrations across major lipoprotein fractions combined with higher levels of low-density lipoprotein cholesterol compared with the PD progenitor. The hepatic transcriptome assessment revealed a network of genes differentially expressed between PD and PD.SHR4 with significant enrichment by members of the circadian rhythmicity pathway (Arntl (Bmal1), Clock, Nfil3, Per2 and Per3). In summary, the introduction of the chromosome 4 region of SHR origin including defective Cd36 into the PD genetic background resulted in disconnected shifts of metabolic profile along with distinct changes in hepatic transcriptome. The synthesis of the current results with those obtained in other Cd36-deficient strains indicates that the eventual metabolic effect of a deleterious mutation such as that of SHR-derived Cd36 is not absolute, but rather a function of complex interactions between environmental and genomic background, upon which it operates.
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- genom MeSH
- glukosa genetika metabolismus MeSH
- glukózový toleranční test MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- modely u zvířat MeSH
- potkani inbrední SHR genetika MeSH
- transkriptom * MeSH
- zvířata kongenní genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD36 MeSH
- glukosa MeSH
Dexamethasone (DEX) is known to induce diabetes and dyslipidemia. We have compared fasting triacylglycerol and cholesterol concentrations across 20 lipoprotein fractions and glucose tolerance in control (standard diet) and DEX-treated 7-month-old males of two rat strains, Brown Norway (BN) and congenic BN.SHR-(Il6-Cd36)/Cub (BN.SHR4). These two inbred strains differ in a defined segment of chromosome 4, originally transferred from the spontaneously hypertensive rat (SHR) including the mutant Cd36 gene, a known target of DEX. Compared to BN, the standard-diet-fed BN.SHR4 showed higher cholesterol and triacylglycerol concentrations across many lipoprotein fractions, particularly in small VLDL and LDL particles. Total cholesterol was decreased by DEX by more than 21% in BN.SHR4 contrasting with the tendency to increase in BN (strain*DEX interaction p = 0.0017). Similar pattern was observed for triacylglycerol concentrations in LDL. The LDL particle size was significantly reduced by DEX in both strains. Also, while control BN and BN.SHR4 displayed comparable glycaemic profiles during oral glucose tolerance test, we observed a markedly blunted DEX induction of glucose intolerance in BN.SHR4 compared to BN. In summary, we report a pharmacogenetic interaction between limited genomic segment with mutated Cd36 gene and dexamethasone-induced glucose intolerance and triacylglycerol and cholesterol redistribution into lipoprotein fractions.
- MeSH
- antigeny CD36 nedostatek genetika MeSH
- cholesterol metabolismus MeSH
- chromozomy metabolismus MeSH
- dexamethason farmakologie MeSH
- farmakogenetika MeSH
- krysa rodu Rattus MeSH
- lipoproteiny chemie MeSH
- mutace MeSH
- omezení příjmu potravy MeSH
- porucha glukózové tolerance MeSH
- potkani inbrední SHR MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD36 MeSH
- cholesterol MeSH
- dexamethason MeSH
- lipoproteiny MeSH
- triglyceridy MeSH