Most cited article - PubMed ID 12406690
Nuclear structure and gene activity in human differentiated cells
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
- Keywords
- Chromatin, Differentiation, Embryonic stem cells, Epigenetics, Nucleus, Pluripotency,
- Publication type
- Journal Article MeSH
Nuclear locations of the c-myc gene and its transcripts (c-myc (T)) have been investigated in relation to nuclear domains involved in RNA synthesis and processing. Transcription of the c-myc gene appears to be linked to the late G(1)- and preferentially to S-phases of the cell cycle. The c-myc gene and its transcripts were positioned non-randomly within the interphase nucleus; additionally, c-myc RNA signals accumulated at nucleoli. Using oligo-probes, designed to exon II and exon III of the c-myc gene, single c-myc (T) was preferentially observed in human carcinoma HT29 and A549 cells. Conversely, human embryonal teratocarcinoma NTERA cells were characterized by the presence of multiple c-myc RNA signals located in both the nucleoli and nucleoplasm. When accumulated at nucleoli, c-myc (T) occupied the periphery of this organelle, though not those associated with the cultivation surface. In HT29 cells, approximately 80% of c-myc (T) co-localized with the RNAP II positive regions, so-called transcription factories. However, in approximately 20% of the cells with c-myc transcripts, the c-myc (T) was released from the site of synthesis, and was not associated with either transcription factories or SC35 domains. In approximately 60% of nuclei with c-myc (T), these signals were located in close proximity to the SC35 regions, but promyelocytic leukaemia bodies were associated with c-myc (T) only in approximately 20% of the nuclei. Taken together, c-myc RNA signals were positioned in the most internal parts of the cell nuclei preferentially associated with the nucleoli. Specific nuclear and nucleolar positioning probably reflects the kinetics of c-myc RNA metabolism.
- MeSH
- Cell Nucleus genetics metabolism ultrastructure MeSH
- HT29 Cells MeSH
- Gene Expression MeSH
- Transcription, Genetic MeSH
- Genes, myc * MeSH
- Humans MeSH
- Chromosomes, Human, Pair 8 MeSH
- RNA, Messenger metabolism MeSH
- Tumor Cells, Cultured MeSH
- Proto-Oncogene Proteins c-myc metabolism MeSH
- RNA Polymerase II metabolism MeSH
- Tissue Distribution MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
- MYC protein, human MeSH Browser
- Proto-Oncogene Proteins c-myc MeSH
- RNA Polymerase II MeSH
Movement of labelled plasmid DNA relative to heterochromatin foci in nuclei, visualized with HP1-GFP, was studied using live-cell imaging and object tracking. In addition to Brownian motion of plasmid DNA we found a pronounced, non-random movement of plasmid DNA towards the nearest HP1 focus, while time-lapse microscopy showed that HP1 foci are relatively immobile and positionally stable. The movement of plasmid DNA was much faster than that of the HP1 foci. Contact of transgene DNA with an HP1 focus usually resulted in cessation of the directional motion. Moreover, the motion of plasmid DNA inside the heterochromatin compartment was more restricted (limited to 0.25 microm) than when the plasmid DNA was outside heterochromatin (R = 0.7 microm). Three days after transfection most of the foreign labelled DNA colocalized with centromeric heterochromatin.
- MeSH
- Biological Transport genetics physiology MeSH
- Cell Nucleus physiology MeSH
- Chromosomal Proteins, Non-Histone genetics physiology MeSH
- DNA genetics physiology MeSH
- Heterochromatin MeSH
- Chromobox Protein Homolog 5 MeSH
- Humans MeSH
- Microscopy MeSH
- Cell Line, Tumor MeSH
- Plasmids genetics physiology MeSH
- Transfection MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromosomal Proteins, Non-Histone MeSH
- DNA MeSH
- Heterochromatin MeSH
- Chromobox Protein Homolog 5 MeSH
The spatial arrangement of some genetic elements relative to chromosome territories and in parallel with the cell nucleus was investigated in human lymphocytes. The structure of the chromosome territories was studied in chromosomes containing regions (clusters) of highly expressed genes (HSA 9, 17) and those without such clusters (HSA 8, 13). In chromosomes containing highly expressed regions, the elements pertaining to these regions were found close to the centre of the nucleus on the inner sides of chromosome territories; those pertaining to regions with low expression were localized close to the nuclear membrane on the opposite sides of the territories. In chromosomes with generally low expression (HSA 8, 13), the elements investigated were found symmetrically distributed over the territories. Based on the investigations of the chromosome structure, the following conclusions are suggested: (1) Chromosome territories have a non-random internal 3D structure with defined average mutual positions between elements. For example, RARalpha, TP53 and Iso-q of HSA 17 are nearer to each other than they are to the HSA 17 centromere. (2) The structure of a chromosome territory reflects the number and chromosome location of clusters of highly expressed genes. (3) Chromosome territories behave to some extent as solid bodies: if the territory is found closer to the nuclear centre, the individual genetic elements of this chromosome are also found, on average, closer the centre of the nucleus. (4) The positions of centromeres are, on average, nearer to the fluorescence weight centre of the territory (FWCT) than to genes. (5) Active genes are not found near the centromeres of their own territory. A simple model of the structure of chromosome territory is proposed.
- MeSH
- Cell Nucleus genetics MeSH
- Centromere genetics MeSH
- Euchromatin genetics MeSH
- Genes MeSH
- Heterochromatin genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Nuclear Envelope genetics MeSH
- Cell Compartmentation MeSH
- Humans MeSH
- Chromosomes, Human, Pair 17 ultrastructure MeSH
- Chromosomes, Human ultrastructure MeSH
- Lymphocytes diagnostic imaging MeSH
- Monte Carlo Method MeSH
- Models, Genetic MeSH
- Computer Simulation MeSH
- Image Processing, Computer-Assisted MeSH
- Ultrasonography MeSH
- Imaging, Three-Dimensional * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Euchromatin MeSH
- Heterochromatin MeSH