Nejvíce citovaný článek - PubMed ID 14610360
BACKGROUND AND AIMS: Dogroses (Rosa sect. Caninae) are mostly pentaploid, bearing 2n = 5x = 35 chromosomes in somatic cells. They evolved a unique form of asymmetrical meiosis characterized by two types of chromosomes: (1) chromosomes forming bivalents and distributed in the normal sexual way; and (2) chromosomes occurring as univalents and transferred by a female gamete only. In the mature pollen of pentaploid species, seven bivalent-derived chromosomes are transmitted to offspring, and 21 unpaired univalent chromosomes are eliminated during microsporogenesis. To discriminate between bivalent- and univalent-forming chromosomes, we studied histone H3 phosphorylation patterns regulating meiotic chromosome condensation and segregation. METHODS: We analysed histone modification patterns during male canina meiosis in two representative dogrose species, 5x Rosa canina and 5x Rosa rubiginosa, by immunohistochemical and molecular cytogenetics approaches. Immunostaining of meiotic cells included α-tubulin, histone H3 phosphorylation (H3S10p, H3S28p and H3T3p) and methylation (H3K4me3 and H3K27me3) marks. In addition, fluorescent in situ hybridization was carried out with an 18S rDNA probe. KEY RESULTS: In the first meiotic division, univalent chromosomes underwent equational division into chromatids, while homologues in bivalents were segregated as regular dyads. In diakinesis, bivalent chromosomes displayed strong H3 phosphorylation signals in proximal regions, spreading to the rest of the chromosome. In contrast, in univalents, the H3 phosphorylation signals were weaker, occurring mostly outside proximal regions largely overlapping with the H3K4me3 signals. Reduced phosphorylation was associated with relative under-condensation of the univalent chromosomes, particularly at early diakinesis. CONCLUSIONS: We hypothesize that the absence of pairing and/or recombination in univalent chromosomes negatively affects the histone H3 phosphorylation of their chromatin and perhaps the loading of meiotic-specific cohesins. This apparently destabilizes cohesion of sister chromatids, leading to their premature split in the first meiotic division.
- Klíčová slova
- Rosa genus, 18S ribosomal DNA, canina meiosis, dogroses, euchromatin and heterochromatin, fluorescence in situ hybridization, histone H3 phosphorylation, immunostaining, non-disjunction,
- MeSH
- chromozomy MeSH
- epigeneze genetická MeSH
- fosforylace MeSH
- histony * genetika MeSH
- hybridizace in situ fluorescenční MeSH
- meióza * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony * MeSH
The centromere is the chromosome region where microtubules attach during cell division. In contrast to monocentric chromosomes with one centromere, holocentric species usually distribute hundreds of centromere units along the entire chromatid. We assembled the chromosome-scale reference genome and analyzed the holocentromere and (epi)genome organization of the lilioid Chionographis japonica. Remarkably, each of its holocentric chromatids consists of only 7 to 11 evenly spaced megabase-sized centromere-specific histone H3-positive units. These units contain satellite arrays of 23 and 28 bp-long monomers capable of forming palindromic structures. Like monocentric species, C. japonica forms clustered centromeres in chromocenters at interphase. In addition, the large-scale eu- and heterochromatin arrangement differs between C. japonica and other known holocentric species. Finally, using polymer simulations, we model the formation of prometaphase line-like holocentromeres from interphase centromere clusters. Our findings broaden the knowledge about centromere diversity, showing that holocentricity is not restricted to species with numerous and small centromere units.
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
- Klíčová slova
- CENH3, CENP-A, Cuscuta, Lathyrus, Luzula, Pisum, Rhynchospora, clustered centromere, holocentromere, microtubule, monocentromere, structured illumination microscopy,
- MeSH
- buněčný cyklus MeSH
- centromera metabolismus MeSH
- chromozomy rostlin metabolismus MeSH
- mikroskopie * MeSH
- molekulární evoluce MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: The dispersed occurrence of holocentric chromosomes across eukaryotes implies they are adaptive, but the conditions under which they confer an advantage over monocentric chromosomes remain unclear. Due to their extended kinetochore and the attachment of spindle microtubules along their entire length, holocentric chromosomes tolerate fragmentation; hence, they may be advantageous in times of exposure to factors that cause chromosomal fragmentation (clastogens). SCOPE: It is shown that holocentric organisms may, indeed, thrive better than monocentric organisms under clastogenic conditions and that such conditions of various duration and intensity have occurred many times throughout the history of Earth's biota. One of the most important clastogenic events in eukaryotic history, in which holocentric chromosomes may have played the key role, was the colonization of land by plants and animals half a billion years ago. In addition to arguments supporting the anticlastogenic hypothesis of holocentric chromosomes and a discussion of its evolutionary consequences, experiments and analyses are proposed to explore this hypothesis in more depth. CONCLUSIONS: It is argued that the tolerance to clastogens explains the origin of holocentric lineages and may also have far-reaching consequences for eukaryotic evolution in general as exemplified by the potential role of holocentric chromosomes in terrestrialization.
- Klíčová slova
- Clastogens, Zygnematophyceae, chromosomal fragmentation, cosmic radiation, desiccation, gamma radiation, herbivory, holokinetic chromosomes, land plants, monocentric chromosomes, terrestrialization, ultraviolet radiation,
- MeSH
- biologická evoluce * MeSH
- centromera fyziologie MeSH
- chromozomy rostlin MeSH
- chromozomy * fyziologie MeSH
- Eukaryota genetika MeSH
- mutace MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes.
- Klíčová slova
- centromere structure, epigenetic modifications, histone methylation, histone phosphorylation, holocentric, meta-polycentric chromosomes,
- Publikační typ
- časopisecké články MeSH