Nejvíce citovaný článek - PubMed ID 14615590
Single-photon optogenetics enables precise, cell-type-specific modulation of neuronal circuits, making it a crucial tool in neuroscience. Its miniaturization in the form of fully implantable wide-field stimulator arrays enables long-term interrogation of cortical circuits and bears promise for brain-machine interfaces for sensory and motor function restoration. However, achieving selective activation of functional cortical representations poses a challenge, as studies show that targeted optogenetic stimulation results in activity spread beyond one functional domain. While recurrent network mechanisms contribute to activity spread, here we demonstrate with detailed simulations of isolated pyramidal neurons from cats of unknown sex that already neuron morphology causes a complex spread of optogenetic activity at the scale of one cortical column. Since the shape of a neuron impacts its optogenetic response, we find that a single stimulator at the cortical surface recruits a complex spatial distribution of neurons that can be inhomogeneous and vary with stimulation intensity and neuronal morphology across layers. We explore strategies to enhance stimulation precision, finding that optimizing stimulator optics may offer more significant improvements than the preferentially somatic expression of the opsin through genetic targeting. Our results indicate that, with the right optical setup, single-photon optogenetics can precisely activate isolated neurons at the scale of functional cortical domains spanning several hundred micrometers.
- Klíčová slova
- brain interface, morphology, neural stimulation, optogenetics, spatial precision, visual cortex,
- MeSH
- kočky MeSH
- modely neurologické MeSH
- mozková kůra fyziologie cytologie MeSH
- neurony fyziologie MeSH
- optogenetika * metody MeSH
- pyramidové buňky fyziologie MeSH
- světelná stimulace metody MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Skin uses interdependent cellular networks for barrier integrity and host immunity, but most underlying mechanisms remain obscure. Herein, we demonstrate that the human parasitic helminth Schistosoma mansoni inhibited pruritus evoked by itch-sensing afferents bearing the Mas-related G-protein-coupled receptor A3 (MrgprA3) in mice. MrgprA3 neurons controlled interleukin (IL)-17+ γδ T cell expansion, epidermal hyperplasia and host resistance against S. mansoni through shaping cytokine expression in cutaneous antigen-presenting cells. MrgprA3 neuron activation downregulated IL-33 but induced IL-1β and tumor necrosis factor in macrophages and type 2 conventional dendritic cells partially through the neuropeptide calcitonin gene-related peptide. Macrophages exposed to MrgprA3-derived secretions or bearing cell-intrinsic IL-33 deletion showed increased chromatin accessibility at multiple inflammatory cytokine loci, promoting IL-17/IL-23-dependent changes to the epidermis and anti-helminth resistance. This study reveals a previously unrecognized intercellular communication mechanism wherein itch-inducing MrgprA3 neurons initiate host immunity against skin-invasive parasites by directing cytokine expression patterns in myeloid antigen-presenting cell subsets.
- MeSH
- dendritické buňky imunologie MeSH
- interleukin 33 * metabolismus imunologie MeSH
- kůže imunologie parazitologie MeSH
- lidé MeSH
- makrofágy imunologie metabolismus MeSH
- myeloidní buňky imunologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- neurony imunologie metabolismus MeSH
- pruritus imunologie MeSH
- receptory spřažené s G-proteiny * metabolismus imunologie genetika MeSH
- Schistosoma mansoni * imunologie MeSH
- schistosomiasis mansoni * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Il33 protein, mouse MeSH Prohlížeč
- interleukin 33 * MeSH
- receptory spřažené s G-proteiny * MeSH
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
- Klíčová slova
- blood flow, fluorescence, label free, molecular sensors, multimodal, optical imaging, optogenetics,
- Publikační typ
- časopisecké články MeSH
Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor.
- MeSH
- fylogeneze MeSH
- iontový transport MeSH
- proteinové domény MeSH
- protonové pumpy chemie MeSH
- rodopsin chemie fyziologie MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protonové pumpy MeSH
- rodopsin MeSH
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
- MeSH
- chlorofyl a metabolismus MeSH
- chlorofyl metabolismus MeSH
- Cryptophyta cytologie metabolismus účinky záření MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- pohyb buněk účinky záření MeSH
- světlo MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- chlorophyll c MeSH Prohlížeč
- fotosystém II (proteinový komplex) MeSH
- vápník MeSH
Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina (NsXeR) and suggest a mechanism of inward proton pumping. We demonstrate that the NsXeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.
- MeSH
- Archaea metabolismus MeSH
- buněčné linie MeSH
- Escherichia coli metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- konformace proteinů MeSH
- lidé MeSH
- liposomy MeSH
- molekulární modely MeSH
- optogenetika * metody MeSH
- protonové pumpy metabolismus MeSH
- protony MeSH
- retina metabolismus MeSH
- rodopsin chemie metabolismus MeSH
- spektrální analýza MeSH
- světlo MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- liposomy MeSH
- protonové pumpy MeSH
- protony MeSH
- rodopsin MeSH