Nejvíce citovaný článek - PubMed ID 15081969
Utilization of ultrasound to enhance high-speed water jet effects
More efficient ways to process materials are constantly being sought, even in the case of continuous water flow technology, which acts on materials mainly by stagnant pressure. An alternative method is an ultrasound-stimulated pulsating water jet, the basis of which is the repeated use of impact pressure, which reduces the time interval for mechanical relaxation. This article focuses on a comparative study from the point of view of water mass flow rate on material penetration and its integrity. Relatively low pressures (p = 20, 30, and 40 MPa) with varying nozzle diameters (d = 0.4 and 0.6 mm) were used to identify the effectiveness of the pulsating water jet. The time exposure of the jet at a fixed place was varied from t = 0.5 to 5 s for each experimental condition. The results showed that with an increase in the pressure and diameter values, the disintegration depth increased. In addition, the surface topography and morphology images showed signs of ductile erosion in the form of erosion pits, upheaved surfaces, and crater formation. The microhardness study showed an increase of 10% subsurface microhardness after the action of the pulsating water jet as compared to the original material.
- Klíčová slova
- continuous and pulsating water jet, erosion, erosion depth, microhardness,
- Publikační typ
- časopisecké články MeSH
Cutting using an abrasive water jet is a complex process involving several physical phenomena. This research studies some of them, mostly the influence of selected variables on the measured forces and vibrations. The traverse speed represents one of the key parameters when cutting using the AWJ. In the presented research, a set of experiments was performed on twelve different metal samples, while the force sensor measured the exerted forces and accelerometers measured the vibrations. Ten different types of steel samples of the same dimensions were cut applying five different traverse speeds. The data obtained during these measurements show that an increase in the traverse speed leads to an increase in the measured forces and vibrations. An analogous experiment performed on bronze and duralumin samples of the same dimensions, having applied higher speeds to compensate for the difference in the material structure and properties, completes the presented data. The most important results of the research are that exerted forces in the z-axis are higher than those in the x-axis, whereas measured vibrations are higher in the x-axis. According to our research, the elemental structure, especially the carbide formation, affects the measured forces and vibrations substantially.
- Klíčová slova
- abrasive water jet, cutting, forces, normal force, tangential force, traverse speed, vibrations,
- Publikační typ
- časopisecké články MeSH
Peening techniques are nowadays attracting more research attention due to their association with the extending of the service life and improving surface texture of engineering components. Ultrasonic pulsating water jet peening represents a new way of mechanical surface treatment. Accelerated water droplets via hammer effect cause small elastic-plastic deformations on the surface. This work deals with peening of aluminum alloy using an ultrasonic pulsating water jet, where periodically acting water droplets were used as the peening medium. The aim of the work was the feasibility study of the peening process and to observe the effects of pressure (p = 10, 20 and 30 MPa) and pattern trajectory (linear hatch and cross hatch). The peened surfaces were analyzed by the surface roughness profile parameters Ra and Rz and the microhardness along the peening axis into the material. Graphically processed results show a clear increase of measured values with increasing pressure (p = 10, 20 and 30 MPa), where the roughness values ranged from 1.89 µm to 4.11 µm, and the microhardness values ranged from 43.3 HV0.005 to 47 HV0.005, as compared to 40.3 HV0.005 obtained for the untreated sample. The achieved results indicate potential using of an ultrasonic pulsating water jet as a new method of surface treatment of metals. By controlled distribution of water droplets, it is possible to achieve a local distribution of surface roughness, and at the same time, strengthening of the subsurface layers in the material without thermal influence on the material.
- Klíčová slova
- PWJ peening, microhardness, surface modification, surface topography,
- Publikační typ
- časopisecké články MeSH
The necessity of monitoring the abrasive waterjet (AWJ) processes increases with the spreading of this tool into the machining processes. The forces produced on the workpiece during the abrasive waterjet machining can yield some valuable information. Therefore, a special waterjet-force measuring device designed and produced in the past has been used for the presented research. It was tested during the AWJ cutting processes, because they are the most common and the best described up-to-date AWJ applications. Deep studies of both the cutting process and the respective force signals led to the decision that the most appropriate indication factor is the tangential-to-normal force ratio (TNR). Three theorems concerning the TNR were formulated and investigated. The first theorem states that the TNR strongly depends on the actual-to-limit traverse speed ratio. The second theorem claims that the TNR relates to the cutting-to-deformation wear ratio inside the kerf. The third theorem states that the TNR value changes when the cutting head and the respective jet axis are tilted so that a part of the jet velocity vector projects into the traverse speed direction. It is assumed that the cutting-to-deformation wear ratio increases in a certain range of tilting angles of the cutting head. This theorem is supported by measured data and can be utilized in practice for the development of a new method for the monitoring of the abrasive waterjet cutting operations. Comparing the tilted and the non-tilted jet, we detected the increase of the TNR average value from 1.28 ± 0.16 (determined for the declination angle 20° and the respective tilting angle 10°) up to 2.02 ± 0.25 (for the declination angle 30° and the respective tilting angle of 15°). This finding supports the previously predicted and published assumptions that the tilting of the cutting head enables an increase of the cutting wear mode inside the forming kerf, making the process more efficient.
- Klíčová slova
- abrasive waterjet, cutting wear, deformation wear, kerf characteristics, normal force, tangential force,
- Publikační typ
- časopisecké články MeSH
Measurements enabling the online monitoring of the abrasive waterjet (AWJ) cutting process are still under development. This paper presents an experimental method which can be applicable for the evaluation of the AWJ cutting quality through the measurement of forces during the cutting process. The force measuring device developed and patented by our team has been used for measurement on several metal materials. The results show the dependence of the cutting to deformation force ratio on the relative traverse speed. Thus, the force data may help with a better understanding the interaction between the abrasive jet and the material, simultaneously impacting the improvement of both the theoretical and empirical models. The advanced models could substantially improve the selection of suitable parameters for AWJ cutting, milling or turning with the desired quality of product at the end of the process. Nevertheless, it is also presented that force measurements may detect some undesired effects, e.g., not fully penetrated material and/or some product distortions. In the case of a proper designing of the measuring device, the force measurement can be applied in the online monitoring of the cutting process and its continuous control.
- Klíčová slova
- abrasive waterjet, cutting, force measurement, force ratio, metals,
- Publikační typ
- časopisecké články MeSH