Most cited article - PubMed ID 15366371
Genetic analysis of X-linked hybrid sterility in the house mouse
Hybrid sterility (HS) is an early postzygotic reproductive isolation mechanism observed in all sexually reproducing species. Infertility of hybrids prevents gene flow between incipient species and leads to speciation. While Drosophila studies have focused almost exclusively on the genic control of HS, two other model species, Mus musculus and budding yeast, provided the first experimental evidence of hybrid sterility governed by the nongenic effects of DNA sequence divergence. Here, we propose that the nongenic effect of increasing DNA divergence between closely related species may impair mutual recognition of homologous chromosomes and disrupt their synapsis. Unsynapsed or mispaired homologs can induce early meiotic arrest, or their random segregation can cause aneuploidy of spermatids and sperm cells. Impaired recognition of homologs may thus act as a universal chromosomal checkpoint contributing to the complexity of genetic control of HS. Chromosomal HS controlled by the Prdm9 gene in mice and HS driven by the mismatch repair machinery in yeast are currently the most advanced examples of chromosomal homology search-based HS. More focus on the cellular and molecular phenotypes of meiosis will be needed to further validate the role of homolog recognition in hybrid sterility and speciation.
- Keywords
- Prdm9, antirecombination, chromosomal sterility, meiotic pairing, reproductive isolation, speciation,
- MeSH
- Chromosomes MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Hybridization, Genetic MeSH
- Infertility * genetics MeSH
- Humans MeSH
- Meiosis MeSH
- Infertility, Male * genetics MeSH
- Mice MeSH
- Saccharomyces cerevisiae genetics MeSH
- Seeds MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- PRDM9 protein, human MeSH Browser
- prdm9 protein, mouse MeSH Browser
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus musculus musculus × Mus musculus domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break hotspots results indificult- to- repair double-strand breaks, incomplete synapsis of homologous chromosomes, and meiotic arrest at the first meiotic prophase. Here, we show that Prdm9 behaves as a major hybrid male sterility gene in mice outside the Mus musculus musculus × Mus musculus domesticus F1 hybrids, in the genomes composed of Mus musculus castaneus and Mus musculus musculus chromosomes segregating on the Mus musculus domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight, and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of 5 quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, 4 control either meiotic synapsis or fertility phenotypes and 1 controls both, synapsis, and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of hybrid male sterility. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled hybrid male sterility represents an example of genetic architecture of hybrid male sterility consisting of genic and chromosomal components.
- Keywords
- HORMAD2, SYCP3, homologous synapsis, meiosis, spermatogenesis, synaptonemal complex,
- MeSH
- Chromosomes MeSH
- Histone-Lysine N-Methyltransferase genetics metabolism MeSH
- Meiosis * genetics MeSH
- Infertility, Male * genetics MeSH
- Mice MeSH
- Semen metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- prdm9 protein, mouse MeSH Browser
Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species-and the underlying mechanism by which structural variants most often contribute to speciation-remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.
- Keywords
- hybridization, reproductive isolation, suppressed recombination,
- MeSH
- Biological Evolution MeSH
- Species Specificity * MeSH
- Phenotype MeSH
- Adaptation, Physiological MeSH
- Humans MeSH
- Evolution, Molecular MeSH
- Reproductive Isolation MeSH
- Genomic Structural Variation genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
- Keywords
- Prdm9 polymorphism, HORMAD2, meiotic chromosome synapsis, reproductive isolation, synaptonemal complex,
- MeSH
- Phylogeography MeSH
- Genetic Introgression * MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Infertility genetics MeSH
- Meiosis MeSH
- Mice genetics MeSH
- Reproductive Isolation * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice genetics MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- prdm9 protein, mouse MeSH Browser
F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
- Keywords
- Bionano optical mapping, Fmr1nb, Hybrid sterility X2, Prdm9, SPO11Cas9 transgene, Speciation,
- MeSH
- X Chromosome genetics MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Homologous Recombination MeSH
- Meiosis MeSH
- MicroRNAs genetics MeSH
- Genes, Modifier * MeSH
- Infertility, Male genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Polymorphism, Genetic * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- MicroRNAs MeSH
- prdm9 protein, mouse MeSH Browser
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
- MeSH
- Species Specificity MeSH
- Genetic Variation MeSH
- Genetic Drift MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- Mating Preference, Animal * MeSH
- Spermatozoa cytology MeSH
- Gene Flow MeSH
- Genetic Speciation MeSH
- Songbirds genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
PR domain containing 9 (Prdm9) is specifying hotspots of meiotic recombination but in hybrids between two mouse subspecies Prdm9 controls failure of meiotic chromosome synapsis and hybrid male sterility. We have previously reported that Prdm9-controlled asynapsis and meiotic arrest are conditioned by the inter-subspecific heterozygosity of the hybrid genome and we presumed that the insufficient number of properly repaired PRDM9-dependent DNA double-strand breaks (DSBs) causes asynapsis of chromosomes and meiotic arrest (Gregorova et al., 2018). We now extend the evidence for the lack of properly processed DSBs by improving meiotic chromosome synapsis with exogenous DSBs. A single injection of chemotherapeutic drug cisplatin increased frequency of RPA and DMC1 foci at the zygotene stage of sterile hybrids, enhanced homolog recognition and increased the proportion of spermatocytes with fully synapsed homologs at pachytene. The results bring a new evidence for a DSB-dependent mechanism of synapsis failure and infertility of intersubspecific hybrids.
- Keywords
- DNA double-strand breaks, Prdm9, chromosomes, gene expression, genetics, genomics, hybrid sterility, meiosis, mouse,
- MeSH
- Cisplatin toxicity MeSH
- DNA Breaks, Double-Stranded drug effects MeSH
- Histone-Lysine N-Methyltransferase genetics metabolism MeSH
- Hybridization, Genetic MeSH
- Meiosis drug effects genetics MeSH
- Infertility, Male genetics MeSH
- Mice, Inbred C57BL MeSH
- DNA Repair MeSH
- Chromosome Pairing drug effects genetics MeSH
- Antineoplastic Agents toxicity MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cisplatin MeSH
- Histone-Lysine N-Methyltransferase MeSH
- prdm9 protein, mouse MeSH Browser
- Antineoplastic Agents MeSH
Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (FST ) and of high divergence (Dxy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females.
- Keywords
- birds, genomic islands of differentiation, hybrid female sterility, oogenesis, speciation,
- MeSH
- Chromosomes genetics MeSH
- Genetic Variation MeSH
- Genetic Association Studies * MeSH
- Genomic Islands genetics MeSH
- Hybridization, Genetic * MeSH
- Meiosis genetics MeSH
- Evolution, Molecular MeSH
- Linkage Disequilibrium genetics MeSH
- Infertility, Female genetics MeSH
- Songbirds genetics MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20-24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs.
- MeSH
- Cell Nucleus genetics MeSH
- Cytochromes b genetics MeSH
- Ecosystem * MeSH
- Falconiformes * MeSH
- Haplotypes MeSH
- DNA, Mitochondrial genetics MeSH
- Electron Transport Complex IV genetics MeSH
- Conservation of Natural Resources * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Cytochromes b MeSH
- DNA, Mitochondrial MeSH
- Electron Transport Complex IV MeSH
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.
- MeSH
- X Chromosome * MeSH
- Genetic Linkage MeSH
- Histone-Lysine N-Methyltransferase genetics MeSH
- Hybridization, Genetic * MeSH
- Meiosis genetics MeSH
- Infertility, Male genetics MeSH
- Mice MeSH
- DNA Damage MeSH
- Recombination, Genetic * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone-Lysine N-Methyltransferase MeSH
- prdm9 protein, mouse MeSH Browser