Nejvíce citovaný článek - PubMed ID 15382865
Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.
- Klíčová slova
- anion, cation, contaminant fate, environmental risk assessment, ionizable organic compound, sorption model, zwitterion,
- MeSH
- adsorpce MeSH
- látky znečišťující půdu * analýza MeSH
- organické látky * chemie MeSH
- půda MeSH
- uhlík chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- organické látky * MeSH
- půda MeSH
- uhlík MeSH
- voda MeSH
In this work, the dissociation of humic acids is investigated from the point of view of their mean activity coefficients. They are determined on the basis of two different concepts: sparingly soluble substance and multistep mechanism. It was found that the mean activity coefficients are generally higher, if the traditional concept is applied to the data, excepting the HA-A sample. Both the used concepts provide the mean activity coefficients dependent on the ionic strength, the amount of dissolved humic acids, and the types of electrolyte added in the studied suspensions. Their values based on the concept of a multistep mechanism and determined for humic acids in NaCl and NaI form a continuous curve and the individual character of their ions did not assert. It means that activity coefficients were affected only by the ionic strength and valence factor of the electrolytes irrespective of their chemical composition. The mean activity coefficients obtained for humic acids in HCl are lower in comparison with NaCl and NaI due to the common ion H+. Comparing the results obtained for individual humic acids, we can state that the results obtained for the HA-E sample are very different from those of other samples. It seems that its solubility is very high, but the majority of the dissolved particles remained in the molecular form and only a small amount of ions is formed.
- Publikační typ
- časopisecké články MeSH