Nejvíce citovaný článek - PubMed ID 16193038
The sustainable material-thermoplastic potato starch (TPS)-was blended with modified natural rubber-epoxidized natural rubber (ENR). The poor mechanical properties of the ENR/TPS blends limited the application. Sulfur vulcanization is a common and economical method to improve the mechanical properties in the rubber industry. To fully understand the relationship between vulcanization systems and ENR/TPS blends and the sustainability of the developed material, the effects of a vulcanization accelerator (N-cyclohexylbenzothiazole-2-sulphenamide (CBS), 2-mercaptobenzothiazole (MBT), N-tert-butylbenzothiazole-2-sulphenamide (TBBS)) and a system type (conventional vulcanization (CV), semi-efficient vulcanization (SEV) and efficient vulcanization (EV)) on curing characteristics, mechanical and thermal properties, water absorption and biodegradability were systematically evaluated. The results indicate that vulcanization significantly improves the mechanical properties of ENR/TPS blends. The performance optimization of the CBS-CV vulcanization system is the best for improving the mechanical properties and reducing the water absorption. The CBS-CV curing system makes ENR/TPS less biodegradable (12-56% of mass loss) than other accelerators and systems. TBBS-CV makes the material more biodegradable (18-66% of mass loss). The low rubber content enables the rapid biodegradation of the vulcanized blend. This has implications for research on sustainable materials. The material can be applied for eco-friendly packaging and agricultural films, etc. The investigation on performance by using common accelerators and systems provides ideas for industries and research.
- Klíčová slova
- accelerator, biodegradable, epoxidized natural rubber, sustainable, thermoplastic starch,
- Publikační typ
- časopisecké články MeSH
This computer study was inspired by the experimental observation of Y. Qian et al. published in ACS Applied Materials and Interfaces, 2018 that the short positively charged β-peptide chains and their oligomeric analogues efficiently suppress severe medical problems caused by antimicrobial drug-resistant bacteria despite them not penetrating the bacterial membrane. Our coarse-grained molecular dynamics (dissipative particle dynamics) simulations confirm the tentative explanation of the authors of the experimental study that the potent antimicrobial activity is a result of the entropically driven release of divalent ions (mainly magnesium ions essential for the proper biological function of bacteria) into bulk solution upon the electrostatic binding of β-peptides to the bacterial membrane. The study shows that in solutions containing cations Na+, Ca2+ and Mg2+, and anions Cl-, the divalent cations preferentially concentrate close to the membrane and neutralize the negative charge. Upon the addition of positively charged oligomer chains (models of β-peptides and their analogues), the oligomers electrostatically bind to the membrane replacing divalent ions, which are released into bulk solvent. Our simulations indicate that the entropy of small ions (which controls the behavior of synthetic polyelectrolyte solutions) plays an important role in this and also in other similar biologically important systems.
- Klíčová slova
- antimicrobial peptides, computer simulations, dissipative particle dynamics, entropy of counterions, lipid membrane,
- Publikační typ
- časopisecké články MeSH
Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.
- Klíčová slova
- anion, cation, contaminant fate, environmental risk assessment, ionizable organic compound, sorption model, zwitterion,
- MeSH
- adsorpce MeSH
- látky znečišťující půdu * analýza MeSH
- organické látky * chemie MeSH
- půda MeSH
- uhlík chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- organické látky * MeSH
- půda MeSH
- uhlík MeSH
- voda MeSH
Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.
CO2 injection (EOR and sequestration technique) creates the amalgamation of hydrocarbons, CO2, and aqueous brine in the subsurface. In this study, molecular dynamics (MD) simulations were used to investigate the diffusivity of hydrocarbon molecules in a realistic scenario of supercritical CO2 (SC-CO2) injection in the subsurface over a wide range of pressures (50 < P < 300 bar) and aqueous brine concentrations (0, 2, and 5% brine). To overcome existing challenges in traditional diffusivity calculation approaches, we took advantage of fundamental molecular-based methods, along with further verification of results by previously published experimental data. In this regard, computational methods and MD simulations were employed to compute diffusion coefficients of hydrocarbons (benzene and pentane). It was found that the presence of water and salt affects the thermodynamic properties of molecules where the intermolecular interactions caused the hydrophobic hydration of hydrocarbons coupled with ionic hydration due to hydrogen bond and ion-dipole interactions. Based on these results, it is demonstrated that the formation of water clusters in the SC-CO2 solvent is a major contributor to the diffusion of hydrophobic molecules. The outcome at different pressure conditions showed that hydrocarbons always would diffuse less in the presence of water. The slopes of linearly fitted MSD of benzene and pentane infinitely diluted in SC-CO2 is around 13 to 20 times larger than the slope with water molecules (4 wt%). When pressure increases (100-300 bar), the diffusion coefficients (D) of benzene and pentane decreases (around 1.2 × 10-9 to 0.4 × 10-9 and 2 × 10-9 to 1 × 10-9 m2 s-1, respectively). Furthermore, brine concentration generally plays a negative role in reducing the diffusivity of hydrocarbons due to the formation of water clusters as a result of hydrophobic and ionic hydration. Under the SC-CO2 rich (injection) system in the shale reservoir, the diffusion of hydrocarbon is correlated to the efficiency of hydrocarbon flow/recovery. Ultimately, this study will guide us to better understand the phenomena that would occur in nanopores of shale that undergo EOR or are becoming a target of CO2 sequestration.
- Publikační typ
- časopisecké články MeSH