Nejvíce citovaný článek - PubMed ID 15843899
Iron deprivation induces apoptosis via mitochondrial changes related to Bax translocation
BACKGROUND: In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3). METHODS AND RESULTS: Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment. CONCLUSION: We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.
- Klíčová slova
- Breast cancer, Caspases, Cell death, Taxanes,
- Publikační typ
- časopisecké články MeSH
The aim of this study is to compare the effects of new fluorinated taxanes SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 with those of the classical taxane paclitaxel and novel non-fluorinated taxane SB-T-1216 on cancer cells. Paclitaxel-sensitive MDA-MB-435 and paclitaxel-resistant NCI/ADR-RES human cancer cell lines were used. Cell growth and survival evaluation, colorimetric assessment of caspases activities, flow cytometric analyses of the cell cycle and the assessment of mitochondrial membrane potential, reactive oxygen species (ROS) and the release of cytochrome c from mitochondria were employed. Fluorinated taxanes have similar effects on cell growth and survival. For MDA-MB-435 cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853 and SB-T-12854 was 3 nM, 4 nM, 3 nM and 5 nM, respectively. For NCI/ADR-RES cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 was 20 nM, 20 nM, 10 nM and 10 nM, respectively. Selected fluorinated taxanes, SB-T-12853 and SB-T-12854, at the death-inducing concentrations (30 nM for MDA-MB-435 and 300 nM for NCI/ADR-RES) were shown to activate significantly caspase-3, caspase-9, caspase-2 and also slightly caspase-8. Cell death was associated with significant accumulation of cells in the G(2)/M phase. Cytochrome c was not released from mitochondria and other mitochondrial functions were not significantly impaired. The new fluorinated taxanes appear to use the same or similar mechanisms of cell death induction as compared with SB-T-1216 and paclitaxel. New fluorinated and non-fluorinated taxanes are more effective against drug-resistant cancer cells than paclitaxel. Therefore, new generation of taxanes, either non-fluorinated or fluorinated, are excellent candidates for further and detailed studies.
- MeSH
- buněčná smrt účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- chemorezistence účinky léků MeSH
- cytochromy c metabolismus MeSH
- DNA nádorová metabolismus MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- paclitaxel chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- screeningové testy protinádorových léčiv MeSH
- sloučeniny fluoru chemie farmakologie MeSH
- taxoidy chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytochromy c MeSH
- DNA nádorová MeSH
- kaspasy MeSH
- paclitaxel MeSH
- reaktivní formy kyslíku MeSH
- sloučeniny fluoru MeSH
- taxoidy MeSH
BACKGROUND: In this study, the effect of novel taxane SB-T-1216 and paclitaxel on sensitive MDA-MB-435 and resistant NCI/ADR-RES human breast cancer cells was compared. MATERIALS AND METHODS: Cell growth and survival were evaluated after 96-hour incubation with tested concentrations of taxanes. The effect on the formation of microtubule bundles was assessed employing fluorescence microscopy and on the cell cycle employing flow cytometric analysis. The activity of caspases was assessed employing commercial colorimetric kits. RESULTS: The IC(50) (concentration resulting in 50% of living cells in comparison with the control) of SB-T-1216 in sensitive cells was 0.6 nM versus 1 nM for paclitaxel. However, the IC(50) of SB-T-1216 in resistant cells was 1.8 nM versus 300 nM for paclitaxel. Both SB-T-1216 and paclitaxel at death-inducing concentrations induced the formation of microtubule bundles in sensitive as well as resistant cells. Cell death induced in sensitive and resistant cells by paclitaxel was associated with the accumulation of cells in the G(2)/M phase. On the contrary, cell death induced by SB-T-1216 took place without the accumulation of cells in the G(2)/M phase but with a decreased number of G(1) cells and the accumulation of hypodiploid cells. Both SB-T-1216 and paclitaxel activated caspase-3, caspase-9, caspase-2 and caspase-8 in sensitive as well as resistant cells. CONCLUSION: Cell death induced by both paclitaxel and novel taxane SB-T-1216 in breast cancer cells is associated with caspase activation and with the formation of interphase microtubule bundles. Novel taxane SB-T-1216, but not paclitaxel, seems to be capable of inducing cell death without the accumulation of cells in the G(2)/M phase.
- MeSH
- apoptóza účinky léků MeSH
- buněčné dělení účinky léků MeSH
- chemorezistence MeSH
- doxorubicin farmakologie MeSH
- fluorescenční mikroskopie MeSH
- fytogenní protinádorové látky farmakologie MeSH
- G1 fáze účinky léků MeSH
- G2 fáze účinky léků MeSH
- kaspasa 2 metabolismus MeSH
- kaspasa 3 metabolismus MeSH
- kaspasa 8 metabolismus MeSH
- kaspasa 9 metabolismus MeSH
- lidé MeSH
- mikrotubuly účinky léků MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie metabolismus patologie MeSH
- paclitaxel farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorová antibiotika farmakologie MeSH
- taxoidy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- Názvy látek
- doxorubicin MeSH
- fytogenní protinádorové látky MeSH
- kaspasa 2 MeSH
- kaspasa 3 MeSH
- kaspasa 8 MeSH
- kaspasa 9 MeSH
- paclitaxel MeSH
- protinádorová antibiotika MeSH
- taxoidy MeSH
We tested the effect of iron deprivation on cell death induction in human Raji cells pre-adapted to differing availability of extracellular iron. Iron deprivation was achieved by incubation in a defined iron-free medium. Original Raji cells have previously been adapted to long-term culture in a defined medium with 5 microg/ml of iron-saturated human transferrin as a source of iron. Raji/lowFe cells were derived from original Raji cells by subsequent adaptation to culture in the medium with 50 microm ferric citrate as a source of iron. Raji/lowFe-re cells were derived from Raji/lowFe cells by re-adaptation to the transferrin-containing (5 microg/ml) medium. Iron deprivation induced cell death in both Raji cells and Raji/lowFe-re cells; that is, cells pre-adapted to a near optimum source of extracellular iron (5 microg/ml of transferrin). However, Raji/lowFe cells preadapted to a limited source of extracellular iron (50 microm ferric citrate) became resistant to the induction of cell death by iron deprivation. We demonstrated that cell death induction by iron deprivation in Raji cells correlates with the activation of executioner caspase-3 and the cleavage of caspase-3 substrate, poly-ADP ribose polymerase. Two other executioner caspases, caspase-7 and caspase-6, were not activated. Taken together, we suggest that in human Raji cells, iron deprivation induces apoptotic cell death related to caspase-3 activation. However, the sensitivity of the cells to death induction by iron deprivation can be reversibly changed by extracellular iron availability. The cells pre-adapted to a limited source of extracellular iron became resistant.
- MeSH
- aktivace enzymů MeSH
- apoptóza účinky léků fyziologie MeSH
- buněčné dělení účinky léků fyziologie MeSH
- Burkittův lymfom MeSH
- deficit železa * MeSH
- kaspasa 3 metabolismus MeSH
- kaspasa 6 metabolismus MeSH
- kaspasa 7 metabolismus MeSH
- kultivační média MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- viabilita buněk účinky léků fyziologie MeSH
- železo farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CASP6 protein, human MeSH Prohlížeč
- kaspasa 3 MeSH
- kaspasa 6 MeSH
- kaspasa 7 MeSH
- kultivační média MeSH
- železo MeSH