Nejvíce citovaný článek - PubMed ID 16113227
Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations
The history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied. Cytogenetic observations of NOR regions with altered structure in plant interspecific hybrids and detailed knowledge of structure and function of rDNA were prerequisites for studies of nucleolar dominance, epistatic interactions of rDNA loci, and epigenetic silencing. In this article, we focus on the early rDNA research in plants, performed mainly at the dawn of molecular biology in the 60 to 80-ties of the last century which presented a prequel to the modern genomic era. We discuss - from a personal view - the topics such as synthesis of rRNA precursor (35S pre-rRNA in plants), processing, and the organization of 35S and 5S rDNA. Cloning and sequencing led to the observation that the transcribed and processed regions of the rRNA genes vary enormously, even between populations and species, in comparison with the more conserved regions coding for the mature rRNAs. Epigenetic phenomena and the impact of hybridization and allopolyploidy on rDNA expression and homogenization are discussed. This historical view of scientific progress and achievements sets the scene for the other articles highlighting the immense progress in rDNA research published in this special issue of Frontiers in Plant Science on "Molecular organization, evolution, and function of ribosomal DNA."
- Klíčová slova
- epigenetics, hybridization, molecular evolution, nucleolar dominance, polyploidy, rDNA research history, rRNA precursor, rRNA processing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In plants, genome duplication followed by genome diversification and selection is recognized as a major evolutionary process. Rapid epigenetic and genetic changes that affect the transcription of parental genes are frequently observed after polyploidization. The pattern of alternative splicing is also frequently altered, yet the related molecular processes remain largely unresolved. Here, we study the inheritance and expression of parental variants of three floral organ identity genes in allotetraploid tobacco. DEFICIENS and GLOBOSA are B-class genes, and AGAMOUS is a C-class gene. Parental variants of these genes were found to be maintained in the tobacco genome, and the respective mRNAs were present in flower buds in comparable amounts. However, among five tobacco cultivars, we identified two in which the majority of paternal GLOBOSA pre-mRNA transcripts undergo exon 3 skipping, producing an mRNA with a premature termination codon. At the DNA level, we identified a G-A transition at the very last position of exon 3 in both cultivars. Although alternative splicing resulted in a dramatic decrease in full-length paternal GLOBOSA mRNA, no phenotypic effect was observed. Our finding likely serves as an example of the initiation of homoeolog diversification in a relatively young polyploid genome.
- Klíčová slova
- Alternative splicing, Floral genes, Flowering, Polyploidy, Tobacco,
- MeSH
- alternativní sestřih genetika MeSH
- bodová mutace genetika MeSH
- exony genetika MeSH
- genetická transkripce * MeSH
- homeodoménové proteiny biosyntéza genetika MeSH
- nukleotidy genetika MeSH
- polyploidie MeSH
- prekurzory RNA genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny biosyntéza genetika MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GLOBOSA protein, plant MeSH Prohlížeč
- homeodoménové proteiny MeSH
- nukleotidy MeSH
- prekurzory RNA MeSH
- rostlinné proteiny MeSH
There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase).
- MeSH
- DNA rostlinná analýza izolace a purifikace MeSH
- elektroforéza kapilární MeSH
- epigeneze genetická MeSH
- fyziologický stres * MeSH
- metylace DNA * MeSH
- rostlinné buňky metabolismus MeSH
- sekvenční analýza DNA MeSH
- teplota MeSH
- Vitis genetika růst a vývoj MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a 'first reserve' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.
- MeSH
- genová dávka * MeSH
- geny rRNA * MeSH
- metylace DNA MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- organizátor jadérka MeSH
- polyploidie MeSH
- promotorové oblasti (genetika) MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 5.8S genetika MeSH
- RNA ribozomální genetika MeSH
- rostlinné geny * MeSH
- sekvenční analýza DNA MeSH
- sekvenční delece MeSH
- Tragopogon genetika MeSH
- umlčování genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- RNA ribozomální 18S MeSH
- RNA ribozomální 5.8S MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 26S MeSH Prohlížeč
In plants, silencing is usually accompanied by DNA methylation and heterochromatic histone marks. We studied these epigenetic modifications in different epialleles of 35S promoter (P35S)-driven tobacco transgenes. In locus 1, the T-DNA was organized as an inverted repeat, and the residing neomycin phosphotransferase II reporter gene (P35S-nptII) was silenced at the posttranscriptional (PTGS) level. Transcriptionally silenced (TGS) epialleles were generated by trans-acting RNA signals in hybrids or in a callus culture. PTGS to TGS conversion in callus culture was accompanied by loss of the euchromatic H3K4me3 mark in the transcribed region of locus 1, but this change was not transmitted to the regenerated plants from these calli. In contrast, cytosine methylation that spread from the transcribed region into the promoter was maintained in regenerants. Also, the TGS epialleles generated by trans-acting siRNAs did not change their active histone modifications. Thus, both TGS and PTGS epialleles exhibit euchromatic (H3K4me3 and H3K9ac) histone modifications despite heavy DNA methylation in the promoter and transcribed region, respectively. However, in the TGS locus (271), abundant heterochromatic H3K9me2 marks and DNA methylation were present on P35S. Heterochromatic histone modifications are not automatically installed on transcriptionally silenced loci in tobacco, suggesting that repressive histone marks and cytosine methylation may be uncoupled. However, transient loss of euchromatic modifications may guide de novo DNA methylation leading to formation of stable repressed epialleles with recovered eukaryotic marks. Compilation of available data on epigenetic modification of inactivated P35S in different systems is provided.
- Klíčová slova
- DNA methylation, callus, dedifferentiation, histone modification, tobacco, transgene silencing,
- MeSH
- chromatin genetika metabolismus MeSH
- epigeneze genetická * MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- histony genetika metabolismus MeSH
- kostní svalek metabolismus MeSH
- metylace DNA MeSH
- regulace genové exprese u rostlin MeSH
- tabák genetika metabolismus MeSH
- transgeny MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- histony MeSH
BACKGROUND: Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. RESULTS: The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. CONCLUSION: The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
- MeSH
- buněčné klony MeSH
- buněčné kultury MeSH
- buněčné linie MeSH
- geneticky modifikované rostliny genetika MeSH
- regulace genové exprese u rostlin * MeSH
- tabák genetika MeSH
- technika přenosu genů * MeSH
- transformace genetická MeSH
- transgeny * MeSH
- zelené fluorescenční proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zelené fluorescenční proteiny MeSH
The widespread occurrence of epigenetic alterations in allopolyploid species deserves scrutiny that DNA methylation systems may be perturbed by interspecies hybridization and polyploidization. Here we studied the genes involved in DNA methylation in Nicotiana tabacum (tobacco) allotetraploid containing S and T genomes inherited from Nicotiana sylvestris and Nicotiana tomentosiformis progenitors. To determine the inheritance of DNA methyltransferase genes and their expression patterns we examined three major DNA methyltransferase families (MET1, CMT3 and DRM) from tobacco and the progenitor species. Using Southern blot hybridization and PCR-based methods (genomic CAPS), we found that the parental loci of these gene families are retained in tobacco. Homoeologous expression was found in all tissues examined (leaf, root, flower) suggesting that DNA methyltransferase genes were probably not themselves targets of uniparental epigenetic silencing for over thousands of generations of allotetraploid evolution. The level of CG and CHG methylation of selected high-copy repeated sequences was similar and high in tobacco and its diploid progenitors. We speculate that natural selection might favor additive expression of parental DNA methyltransferase genes maintaining high levels of DNA methylation in tobacco, which has a repeat-rich heterochromatic genome.
- MeSH
- diploidie MeSH
- DNA rostlinná genetika MeSH
- DNA-(cytosin-5-)methyltransferasa klasifikace genetika metabolismus MeSH
- epigeneze genetická MeSH
- exprese genu MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- klonování DNA MeSH
- metylace DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- multigenová rodina * MeSH
- polyploidie MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostlinné geny * MeSH
- sekvence nukleotidů MeSH
- selekce (genetika) MeSH
- tabák enzymologie genetika MeSH
- tkáňová distribuce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- DNA-(cytosin-5-)methyltransferasa MeSH
Using a two-component transgene system involving two epiallelic variants of the invertedly repeated transgenes in locus 1 (Lo1) and a homologous single-copy transgene locus 2 (Lo2), we have studied the stability of the methylation patterns and trans-silencing interactions in cell culture and regenerated tobacco (Nicotiana tabacum) plants. The posttranscriptionally silenced (PTGS) epiallele of the Lo1 trans-silences and trans-methylates the target Lo2 in a hybrid (Lo1/Lo2 line), while its transcriptionally silenced variant (Lo1E) does not. This pattern was stable over several generations in plants. However, in early Lo1E/Lo2 callus, decreased transgene expression and partial loss of Lo1E promoter methylation compared with leaf tissue in the parental plant were observed. Analysis of small RNA species and coding region methylation suggested that the transgenes were silenced by a PTGS mechanism. The Lo1/Lo2 line remained silenced, but the nonmethylated Lo1 promoter acquired partial methylation in later callus stages. These data indicate that a cell culture process has brought both epialleles to a similar epigenetic ground. Bisulfite sequencing of the 35S promoter within the Lo1 silencer revealed molecules with no, intermediate, and high levels of methylation, demonstrating, to our knowledge for the first time, cell-to-cell methylation diversity of callus. Regenerated plants showed high interindividual but low intraindividual epigenetic variability, indicating that the callus-induced epiallelic variants were transmitted to plants and became fixed. We propose that epigenetic changes associated with dedifferentiation might influence regulatory pathways mediated by trans-PTGS processes.
- MeSH
- alely * MeSH
- buněčné kultury MeSH
- epigeneze genetická * MeSH
- geneticky modifikované rostliny MeSH
- metylace DNA MeSH
- obrácené repetice genetika MeSH
- otevřené čtecí rámce genetika MeSH
- přeprogramování buněk genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- regenerace genetika MeSH
- regulace genové exprese u rostlin MeSH
- RNA rostlin metabolismus MeSH
- sekvenční analýza DNA MeSH
- siřičitany MeSH
- Southernův blotting MeSH
- tabák genetika fyziologie MeSH
- transgeny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogen sulfite MeSH Prohlížeč
- RNA rostlin MeSH
- siřičitany MeSH