Most cited article - PubMed ID 16228347
Determination of the antenna heterogeneity of Photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities
Plants growing in nature often experience fluctuating irradiance. However, in the laboratory, the dynamics of photosynthesis are usually explored by instantaneously exposing dark-adapted plants to constant light and examining the dark-to-light transition, which is a poor approximation of natural phenomena. With the aim creating a better approximation, we exposed leaves of pea (Pisum sativum) to oscillating light and measured changes in the functioning of PSI and PSII, and of the proton motive force at the thylakoid membrane. We found that the dynamics depended on the oscillation period, revealing information about the underlying regulatory networks. As demonstrated for a selected oscillation period of 60 s, the regulation tries to keep the reaction centers of PSI and PSII open. We present an evaluation of the data obtained, and discuss the involvement of particular processes in the regulation of photosynthesis. The forced oscillations provided an information-rich fingerprint of complex regulatory networks. We expect future progress in understanding these networks from experiments involving chemical interventions and plant mutants, and by using mathematical modeling and systems identification and control tools.
- Keywords
- Pisum sativum, Fluctuating light, forced oscillations, pea, photosynthesis, photosystem I and II, proton motive force, regulation,
- MeSH
- Photosynthesis physiology MeSH
- Photosystem I Protein Complex metabolism MeSH
- Photosystem II Protein Complex * metabolism MeSH
- Pisum sativum * metabolism MeSH
- Plant Leaves metabolism MeSH
- Plants metabolism MeSH
- Light MeSH
- Electron Transport physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Photosystem I Protein Complex MeSH
- Photosystem II Protein Complex * MeSH
The largest stable photosystem II (PSII) supercomplex in land plants (C2S2M2) consists of a core complex dimer (C2), two strongly (S2) and two moderately (M2) bound light-harvesting protein (LHCB) trimers attached to C2 via monomeric antenna proteins LHCB4-6. Recently, we have shown that LHCB3 and LHCB6, presumably essential for land plants, are missing in Norway spruce (Picea abies), which results in a unique structure of its C2S2M2 supercomplex. Here, we performed structure-function characterization of PSII supercomplexes in Arabidopsis (Arabidopsis thaliana) mutants lhcb3, lhcb6, and lhcb3 lhcb6 to examine the possibility of the formation of the "spruce-type" PSII supercomplex in angiosperms. Unlike in spruce, in Arabidopsis both LHCB3 and LHCB6 are necessary for stable binding of the M trimer to PSII core. The "spruce-type" PSII supercomplex was observed with low abundance only in the lhcb3 plants and its formation did not require the presence of LHCB4.3, the only LHCB4-type protein in spruce. Electron microscopy analysis of grana membranes revealed that the majority of PSII in lhcb6 and namely in lhcb3 lhcb6 mutants were arranged into C2S2 semi-crystalline arrays, some of which appeared to structurally restrict plastoquinone diffusion. Mutants without LHCB6 were characterized by fast induction of non-photochemical quenching and, on the contrary to the previous lhcb6 study, by only transient slowdown of electron transport between PSII and PSI. We hypothesize that these functional changes, associated with the arrangement of PSII into C2S2 arrays in thylakoids, may be important for the photoprotection of both PSI and PSII upon abrupt high-light exposure.
- MeSH
- Arabidopsis genetics metabolism MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Chlorophyll Binding Proteins genetics metabolism MeSH
- Picea metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Photosystem II Protein Complex MeSH
- Lhcb6 protein, Arabidopsis MeSH Browser
- Arabidopsis Proteins MeSH
- Chlorophyll Binding Proteins MeSH
Foundations of photosynthesis research have been established mainly by studying the response of plants to changing light, typically to sudden exposure to a constant light intensity after dark acclimation or light flashes. This approach remains valid and powerful, but can be limited by requiring dark acclimation before time-domain measurements and often assumes that rate constants determining the photosynthetic response do not change between dark and light acclimation. We show that these limits can be overcome by measuring plant responses to sinusoidally modulated light of varying frequency. By its nature, such frequency-domain characterization is performed in light-acclimated plants with no need for prior dark acclimation. Amplitudes, phase shifts, and upper harmonic modulation extracted from the data for a wide range of frequencies can target different kinetic domains and regulatory feedbacks. The occurrence of upper harmonic modulation reflects nonlinear phenomena, including photosynthetic regulation. To support these claims, we measured chlorophyll fluorescence emission of the green alga Chlorella sorokiniana in light that was sinusoidally modulated in the frequency range 1000-0.001 Hz. Based on these experimental data and numerical as well as analytical mathematical models, we propose that frequency-domain measurements can become a versatile tool in plant sensing.
- MeSH
- Biosensing Techniques * MeSH
- Chlorella metabolism MeSH
- Photosynthesis * MeSH
- Light * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE: In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS: We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
- Keywords
- Calvin–Benson cycle, chlorophyll a fluorescence induction, discoveries in photosynthesis, modelling, non-photochemical quenching (of the excited state of chlorophyll a), photosynthetic electron transport, state transitions,
- MeSH
- Biomass MeSH
- Chlorophyll A * MeSH
- Chlorophyll MeSH
- Photosynthesis * MeSH
- Photosystem II Protein Complex MeSH
- Oxygen MeSH
- Humans MeSH
- Light MeSH
- Electron Transport MeSH
- Water MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Chlorophyll A * MeSH
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
- Oxygen MeSH
- Water MeSH