Nejvíce citovaný článek - PubMed ID 16401104
Molecular assembly of metallacarboranes in water: light scattering and microscopy study
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
- Klíčová slova
- borane, carborane, cobalt bis(dicarbollide), dicarbollide, lithiation, metalation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2-2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.
- Klíčová slova
- Gram-positive bacterium, additive effect, antibiotics, antimicrobial activity, carborane, erythromycin, metallacarboranes, synergistic effect, tetracycline, vancomycin,
- Publikační typ
- časopisecké články MeSH
A small library of boron-cluster- and metallacarborane-cluster-based ligands was designed, prepared, and tested for isoform-selective activation or inhibition of the three nitric oxide synthase isoforms. On the basis of the concept of creating a hydrophobic analogue of a natural substrate, a stable and nontoxic basic boron cluster system, previously used for boron neutron capture therapy, was modified by the addition of positively charged moieties to its periphery, providing hydrophobic and nonclassical hydrogen bonding interactions with the protein. Several of these compounds show efficacy for inhibition of NO synthesis with differential effects on the various nitric oxide synthase isoforms.
- MeSH
- chemické modely MeSH
- kobalt chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- organokovové sloučeniny chemická syntéza farmakologie MeSH
- protein - isoformy MeSH
- sloučeniny boru chemická syntéza farmakologie MeSH
- synthasa oxidu dusnatého antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kobalt MeSH
- organokovové sloučeniny MeSH
- protein - isoformy MeSH
- sloučeniny boru MeSH
- synthasa oxidu dusnatého MeSH