Nejvíce citovaný článek - PubMed ID 16585709
Lyme borreliosis (LB), caused by spirochetes of the Borrelia burgdorferi sensu lato (s.l.) complex, is one of the most common vector-borne zoonotic diseases in Europe. Knowledge about the enzootic circulation of Borrelia pathogens between ticks and their vertebrate hosts is epidemiologically important and enables assessment of the health risk for the human population. In our project, we focused on the following vertebrate species: European hedgehog (Erinaceus europaeus), Northern white-breasted hedgehog (E. roumanicus), Eurasian red squirrel (Sciurus vulgaris), and Common blackbird (Turdus merula). The cadavers of accidentally killed animals used in this study constitute an available source of biological material, and we have confirmed its potential for wide monitoring of B. burgdorferi s.l. presence and genospecies diversity in the urban environment. High infection rates (90% for E. erinaceus, 73% for E. roumanicus, 91% for S. vulgaris, and 68% for T. merula) were observed in all four target host species; mixed infections by several genospecies were detected on the level of individuals, as well as in particular tissue samples. These findings show the usefulness of multiple tissue sampling as tool for revealing the occurrence of several genospecies within one animal and the risk of missing particular B. burgdorferi s.l. genospecies when looking in one organ alone.
- Klíčová slova
- Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Common blackbird, Eurasian red squirrel, European hedgehog, Northern white-breasted hedgehog,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. METHODS: Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. RESULTS: Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. CONCLUSIONS: Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia populations because of the re-assortment of pre-existing sequence variants. Even if our findings of broad genetic diversity among 8 strains cultured from ticks that fed on a single bird could be the exception rather than the rule, they support the theory that the diversity and evolution of LB spirochetes is driven mainly by the host.
- MeSH
- Borrelia burgdorferi klasifikace genetika izolace a purifikace MeSH
- esenciální geny MeSH
- fylogeneze MeSH
- genetická variace MeSH
- klíšťata mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- ptáci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. METHODS: In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. RESULTS: A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. CONCLUSIONS: Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since they belong to a nature reserve. Abiotic and biotic conditions most likely favored the host-seeking activity of I. ricinus and the increase of multiple Borrelia infections in ticks. These changes have led to a potential higher risk of humans and animals to be infected with Lyme borreliosis.
- MeSH
- Borrelia burgdorferi komplex klasifikace genetika izolace a purifikace MeSH
- časové faktory MeSH
- DNA bakterií genetika MeSH
- hustota populace MeSH
- klíště růst a vývoj mikrobiologie MeSH
- polymerázová řetězová reakce MeSH
- prevalence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
- Názvy látek
- DNA bakterií MeSH
Borrelia burgdorferi sensu lato (s.l.) complex is a diverse group of worldwide distributed bacteria that includes 18 named spirochete species and a still not named group proposed as genomospecies 2. Descriptions of new species and variants continue to be recognized, so the current number of described species is probably not final. Most of known spirochete species are considered to have a limited distribution. Eleven species from the B. burgdorferi s.l. complex were identified in and strictly associated with Eurasia (B. afzelii, B. bavariensis, B. garinii, B. japonica, B. lusitaniae, B. sinica, B. spielmanii, B. tanukii, B. turdi, B. valaisiana, and B. yangtze), while another 5 (B. americana, B. andersonii, B. californiensis, B. carolinensis, and B. kurtenbachii) were previously believed to be restricted to the USA only. B. burgdorferi sensu stricto (s.s.), B. bissettii, and B. carolinensis share the distinction of being present in both the Old and the New World. Out of the 18 genospecies, 3 commonly and 4 occasionally infect humans, causing Lyme borreliosis (LB) - a multisystem disease that is often referred to as the 'great imitator' due to diversity of its clinical manifestations. Among the genospecies that commonly infect people, i.e. B. burgdorferi s.s., B. afzelii, and B. garinii, only B. burgdorferi s.s. causes LB both in the USA and in Europe, with a wide spectrum of clinical conditions ranging from minor cutaneous erythema migrans (EM) to severe arthritis or neurological manifestations. The epidemiological data from many European countries and the USA show a dramatic increase of the diagnosed cases of LB due to the development of new progressive diagnostic methods during the last decades (Hubálek, 2009). Recently, the definition of the disease has also changed. What was not considered Lyme borreliosis before might be now.
- MeSH
- arachnida jako vektory mikrobiologie fyziologie MeSH
- Borrelia burgdorferi klasifikace genetika izolace a purifikace patogenita MeSH
- DNA bakterií genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- hlodavci MeSH
- klíšťata mikrobiologie fyziologie MeSH
- lidé MeSH
- lymeská nemoc * diagnóza epidemiologie mikrobiologie přenos MeSH
- polymerázová řetězová reakce MeSH
- ptáci MeSH
- techniky typizace bakterií metody MeSH
- veřejné zdravotnictví MeSH
- zdroje nemoci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
- Spojené státy americké MeSH
- Názvy látek
- DNA bakterií MeSH
A group of 16 isolates with genotypic characteristics different from those of known species of the Borrelia burgdorferi sensu lato complex were cultured from ear biopsies of the rodents Peromyscus gossypinus and Neotoma floridana trapped at five localities in South Carolina, USA, and from the tick Ixodes minor feeding on N. floridana. Multilocus sequence analysis of members of the novel species, involving the 16S rRNA gene, the 5S-23S (rrf-rrl) intergenic spacer region and the flagellin, ospA and p66 genes, was conducted and published previously and was used to clarify the taxonomic status of the novel group of B. burgdorferi sensu lato isolates. Phylogenetic analysis based on concatenated sequences of the five analysed genomic loci showed that the 16 isolates clustered together but separately from other species in the B. burgdorferi sensu lato complex. The analysed group therefore represents a novel species, formally described here as Borrelia carolinensis sp. nov., with the type strain SCW-22(T) (=ATCC BAA-1773(T) =DSM 22119(T)).
- MeSH
- Borrelia burgdorferi komplex klasifikace genetika izolace a purifikace MeSH
- DNA bakterií genetika MeSH
- flagelin genetika MeSH
- fylogeneze * MeSH
- klíště mikrobiologie MeSH
- mezerníky ribozomální DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- multilokusová sekvenční typizace MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- Sigmodontinae mikrobiologie MeSH
- techniky typizace bakterií MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- Jižní Karolína MeSH
- Názvy látek
- DNA bakterií MeSH
- flagelin MeSH
- mezerníky ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
Borrelia spirochetes in bird-feeding ticks were studied in the Czech Republic. During the postbreeding period (July to September 2005), 1,080 passerine birds infested by 2,240 Ixodes ricinus subadult ticks were examined. Borrelia garinii was detected in 22.2% of the ticks, Borrelia valaisiana was detected in 12.8% of the ticks, Borrelia afzelii was detected in 1.6% of the ticks, and Borrelia burgdorferi sensu stricto was detected in 0.3% of the ticks. After analysis of infections in which the blood meal volume and the stage of the ticks were considered, we concluded that Eurasian blackbirds (Turdus merula), song thrushes (Turdus philomelos), and great tits (Parus major) are capable of transmitting B. garinii; that juvenile blackbirds and song thrushes are prominent reservoirs for B. garinii spirochetes; that some other passerine birds investigated play minor roles in transmitting B. garinii; and that the presence B. afzelii in ticks results from infection in a former stage. Thus, while B. garinii transmission is associated with only a few passerine bird species, these birds have the potential to distribute millions of Lyme disease spirochetes between urban areas.
- MeSH
- bakteriální proteiny genetika MeSH
- Borrelia klasifikace izolace a purifikace MeSH
- DNA bakterií chemie genetika MeSH
- klíště mikrobiologie MeSH
- lymeská nemoc přenos veterinární MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- molekulární sekvence - údaje MeSH
- nemoci ptáků mikrobiologie MeSH
- Passeriformes mikrobiologie MeSH
- ribozomální DNA chemie genetika MeSH
- sekvenční analýza DNA MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
Approximately 118 Borrelia isolates were cultured from a variety of rodents, birds, and ticks collected in the southern United States. In addition to a highly diverse group of Borrelia bissettii strains and a homogenous group of Borrelia burgdorferi sensu stricto strains, a group of 16 isolates with unusual characteristics was found. The isolates were cultured from ear biopsy samples of the rodents Peromyscus gossypinus and Neotoma floridana trapped at five localities in South Carolina. A multilocus sequence analysis of the rrf-rrl intergenic spacer, 16S rRNA, fla, ospA, and p66 genes were used to clarify the taxonomic status of the new group of B. burgdorferi sensu lato isolates. Thirteen species of the B. burgdorferi sensu lato complex were used as controls. Unique restriction fragment length polymorphism patterns of the rrf-rrl intergenic spacer region and fla gene were recognized. Unique signature nucleotides were also found in the 16S rRNA gene. A phylogenetic analysis shows that the 16 new isolates cluster together but separately from the other species in the B. burgdorferi sensu lato complex. Our data strongly support the recognition of the 16 isolates as a new B. burgdorferi sensu lato species. We propose to name this genospecies "Borrelia carolinensis" with respect to the place of its currently known geographic location.
- MeSH
- bakteriální proteiny genetika MeSH
- bakteriální RNA genetika MeSH
- Borrelia burgdorferi komplex klasifikace izolace a purifikace MeSH
- DNA bakterií chemie genetika MeSH
- fylogeneze MeSH
- geny rRNA MeSH
- křeček rodu Peromyscus mikrobiologie MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- molekulární sekvence - údaje MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- shluková analýza MeSH
- Sigmodontinae mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- jihovýchod USA MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriální RNA MeSH
- DNA bakterií MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
Blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were found to carry 95% of all spirochete-infected tick larvae among 40 bird species captured in Central Europe. More than 90% of the infections were typed as Borrelia garinii and Borrelia valaisiana. We conclude that thrushes are key players in the maintenance of these spirochete species in this region of Central Europe.
- MeSH
- Borrelia burgdorferi komplex genetika MeSH
- infekce bakteriemi rodu Borrelia epidemiologie veterinární MeSH
- klíšťata genetika mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- nemoci ptáků mikrobiologie MeSH
- Passeriformes mikrobiologie parazitologie MeSH
- prevalence MeSH
- regresní analýza MeSH
- rizikové faktory MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA veterinární MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Slovenská republika epidemiologie MeSH