Nejvíce citovaný článek - PubMed ID 16649103
Asparagales telomerases which synthesize the human type of telomeres
Most eukaryotic organisms employ a telomerase complex for the maintenance of chromosome ends. The core of this complex is composed of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) subunits. The TERT reverse transcriptase (RT) domain synthesises telomeric DNA using the TR template sequence. The other TERT domains contribute to this process in different ways. In particular, the TERT RNA-binding domain (TRBD) interacts with specific TR motif(s). Using a yeast 3-hybrid system, we show the critical role of Arabidopsis thaliana (At) TRBD and embryophyta-conserved KRxR motif in the unstructured linker preceding the TRBD domain for binding to the recently identified AtTR subunit. We also show the essential role of the predicted P4 stem and pseudoknot AtTR structures and provide evidence for the binding of AtTRBD to pseudoknot and KRxR motif stabilising interaction with the P4 stem structure. Our results thus provide the first insight into the core part of the plant telomerase complex.
- Klíčová slova
- A.thaliana telomerase, AtTERT, AtTR, Protein-RNA interactions, Yeast three-hybrid,
- MeSH
- Arabidopsis * genetika enzymologie MeSH
- konformace nukleové kyseliny MeSH
- proteiny huseníčku * genetika metabolismus chemie MeSH
- RNA rostlin genetika metabolismus MeSH
- RNA metabolismus genetika MeSH
- techniky dvojhybridového systému MeSH
- telomerasa * genetika metabolismus chemie MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Telomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.
- MeSH
- brouci genetika MeSH
- DNA genetika MeSH
- eukaryotické buňky fyziologie MeSH
- fylogeneze MeSH
- genetické techniky MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- telomerasa MeSH
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase-a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase-its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component-were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
- Klíčová slova
- evolution, plant TERT, plant TR., telomerase, telomerase RNA (TR), telomerase reverse transcriptase (TERT),
- MeSH
- biologická evoluce * MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- RNA fyziologie MeSH
- telomerasa chemie fyziologie MeSH
- telomery metabolismus MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.
- MeSH
- Allium genetika MeSH
- Arabidopsis genetika MeSH
- chřestotvaré genetika MeSH
- fylogeneze * MeSH
- genom rostlinný genetika MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- RNA genetika MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- vyšší rostliny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions.
- Klíčová slova
- AtPOT1a, PURα1, Pontin, Reptin, TAP-MS, Telomerase,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- buněčné jádro enzymologie MeSH
- chromatografie afinitní MeSH
- exprese genu MeSH
- interakční proteinové domény a motivy MeSH
- kultivované buňky MeSH
- mapování interakce mezi proteiny MeSH
- mapy interakcí proteinů MeSH
- multimerizace proteinu MeSH
- proteiny huseníčku genetika izolace a purifikace metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- telomerasa genetika izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku MeSH
- telomerasa MeSH
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms.
- Klíčová slova
- plant, shelterin, telomerase, telomere, telomeric proteins, telomeric repeat binding (TRB),
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
- MeSH
- Arabidopsis genetika MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- dvouřetězcové zlomy DNA MeSH
- fenotyp MeSH
- fylogeneze MeSH
- homeostáza telomer genetika MeSH
- homologní rekombinace MeSH
- mechy genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- oprava DNA * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- telomerasa genetika metabolismus MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- rostlinné proteiny MeSH
- telomerasa MeSH
In most eukaryotes, telomeres consist of tandem arrays of a short repetitive DNA sequence. Insect telomeres are generally constituted by a (TTAGG)n repeat motif. Usually, telomeres are maintained by telomerase, a specialized reverse transcriptase that adds this sequence to chromosome ends. We examined telomerase activity in 15 species across Insecta. Telomerase activity was revealed in Isoptera, Blattaria, Lepidoptera, Hymenoptera, Trichoptera, Coleoptera, and Sternorrhyncha. In contrast, we were not able to detect telomerase activity in Orthoptera, Zygentoma, and Phasmida. Because we found telomerase activity in phylogenetically distant species, we conclude that a distribution pattern of (TTAGG)n sequence in Insecta is generally consistent with that of telomerase activity. Thus, the TTAGG-telomerase system is functional across the Insecta. Using real-time quantitative telomeric repeat amplification protocol (RTQ-TRAP) system, we quantified telomerase activity in different developmental stages and different tissues of a cockroach, Periplaneta americana. We show that telomerase is upregulated in young instars and gradually declines during development. In adults, it is most active in testes and ovaries. Thus, the telomerase activity of hemimetabolous insects seems to be associated with cell proliferation and organismal development.
- MeSH
- bourec genetika MeSH
- fylogeneze * MeSH
- hmyz genetika MeSH
- hybridizace in situ fluorescenční MeSH
- replikace DNA genetika MeSH
- tandemové repetitivní sekvence genetika MeSH
- telomerasa genetika MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- telomerasa MeSH
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.
- MeSH
- DNA řas genetika MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- genom MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- sekvence nukleotidů MeSH
- tandemové repetitivní sekvence MeSH
- telomery genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA řas MeSH
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
- MeSH
- alternativní sestřih MeSH
- exony MeSH
- genetická transkripce MeSH
- genetické lokusy MeSH
- genom rostlinný MeSH
- genová přestavba MeSH
- introny MeSH
- izoformy RNA MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů MeSH
- pseudogeny MeSH
- repetitivní sekvence nukleových kyselin MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- tabák genetika MeSH
- telomerasa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izoformy RNA MeSH
- telomerasa MeSH