Nejvíce citovaný článek - PubMed ID 16774587
Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.
- Klíčová slova
- Acanthamoeba castellanii, Cytotoxicity, Deep eutectic solvents, Excystment, Lactate dehydrogenase,
- MeSH
- Acanthamoeba castellanii * účinky léků genetika MeSH
- amébicidy farmakologie chemie MeSH
- buněčná adheze účinky léků MeSH
- endoteliální buňky účinky léků MeSH
- genotyp * MeSH
- lidé MeSH
- organofosforové sloučeniny farmakologie chemie MeSH
- rozpouštědla * chemie farmakologie MeSH
- trofozoiti účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amébicidy MeSH
- organofosforové sloučeniny MeSH
- rozpouštědla * MeSH
Reptiles are frequently kept as pet animals. They are considered as important reservoirs of protozoa with veterinary-medical significance. At a reptile farm in Ireland, fecal samples were collected from 98 captive reptiles, representing 43 species of three orders (Squamata, Testudines, and Crocodylia). After DNA extraction, all samples were screened by conventional PCRs, targeting the ribosomal small subunit (SSU) RNA and alpha-tubulin genes of trichomonads and SSU RNA gene of Acanthamoeba spp. One leopard gecko (Eublepharis macularius) was positive for a not yet reported species/genotype of the genus Monocercomonas, different from M. colubrorum. Various Acanthamoeba genotypes were detected in six reptilian species, i.e., Acanthamoeba genotype T11 in Eunectes notaeus and Heloderma suspectum/horridum; genotype T4 in Varanus exanthematicus, Chlamydosaurus kingii, and Macrochelys temminckii; and the genotype T13 in Iguana iguana. Some of these amoeba species might have clinicopathological significance in both humans and animals. Our findings highlight the importance to monitor pathogenic protozoa in pet as well as wildlife reptiles, as a source of possible infection for animals and humans living nearby.
- Klíčová slova
- Acanthamoeba, Protozoa, SSU rRNA gene, Squamata, Trichomonadea,
- MeSH
- Acanthamoeba * genetika MeSH
- Amoeba * MeSH
- feces MeSH
- genotyp MeSH
- lidé MeSH
- plazi parazitologie MeSH
- RNA MeSH
- Trichomonadida * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA MeSH
Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.
- Klíčová slova
- Acanthamoeba keratitis, additive effect, pharmacokinetics, synergistic effect, β-tubulin,
- MeSH
- Acanthamoeba * MeSH
- akantamébová keratitida * parazitologie MeSH
- lidé MeSH
- ligandy MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- tubulin MeSH
- xantony MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ligandy MeSH
- mangostin MeSH Prohlížeč
- tubulin MeSH
- xantony MeSH
Acanthamoeba is known to interact with a plethora of microorganisms such as bacteria, fungi and viruses. In these interactions, the amoebae can be predatory in nature, transmission vehicle or an incubator. Amoebae consume microorganisms, especially bacteria, as food source to fulfil their nutritional needs by taking up bacteria through phagocytosis and lysing them in phagolysosomes and hence play an eminent role in the regulation of bacterial density in the nature and accountable for eradication of around 60% of the bacterial population in the environment. Acanthamoeba can also act as a "Trojan horse" for microbial transmission in the environment. Additionally, Acanthamoeba may serve as an incubator-like reservoir for microorganisms, including those that are pathogenic to humans, where the microorganisms use amoebae's defences to resist harsh environment and evade host defences and drugs, whilst growing in numbers inside the amoebae. Furthermore, amoebae can also be used as a "genetic melting pot" where exchange of genes as well as adaptation of microorganisms, leading to higher pathogenicity, may arise. Here, we describe bacteria, fungi and viruses that are known to interact with Acanthamoeba spp.
Water suspensions of cysts of a pathogenic clinical isolate of Acanthamoeba sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts. The negative discharge appeared to be more effective than the positive one. The complete inactivation occurred in water suspension after 40 min and on contaminated lenses after 50 min of plasma exposure. The properties of lenses seem to not be affected by plasma exposure; that is, their optical power, diameter, curvature, water content and infrared and Raman spectra remain unchanged.
- Klíčová slova
- Acanthamoeba, DC corona discharge, IR spectra, Raman spectra, contact lenses, cysts,
- Publikační typ
- časopisecké články MeSH
Acanthamoeba keratitis (AK) is a relatively rare disease worldwide. Over the past 10 years, five cases of AK were reported in Slovakia. Four preserved Slovak strains and one strain from the Czech Republic isolated from corneal scrapes of patients with AK are characterised in this study. Genotype identification of isolates is based on sequences of the PCR amplimer GTSA.B1 amplified from 18S ribosomal DNA. A strain isolated from the first patient in 1999 was classified as a rare sequence type T15. This is just the second report in which genotype T15 has been associated with AK. The other three Slovak strains were identified as belonging to the most common genotype T4. The only strain originating from the Czech Republic was classified as sporadically appearing sequence type T3. All isolates were also studied for their temperature tolerance and growth characteristics. The cythopatic effect was tested in vitro on Vero cell cultures.
- MeSH
- Acanthamoeba klasifikace genetika izolace a purifikace fyziologie MeSH
- akantamébová keratitida parazitologie MeSH
- dospělí MeSH
- fylogeneze MeSH
- genotyp MeSH
- geny rRNA MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- molekulární sekvence - údaje MeSH
- protozoální DNA chemie genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA protozoální genetika MeSH
- RNA ribozomální 18S genetika MeSH
- rohovka parazitologie MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
- RNA protozoální MeSH
- RNA ribozomální 18S MeSH