Nejvíce citovaný článek - PubMed ID 17008099
Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.
- MeSH
- Bacteria * genetika MeSH
- biologický transport MeSH
- fototrofní procesy MeSH
- fylogeneze MeSH
- rhodopsiny mikrobiální genetika metabolismus MeSH
- RNA ribozomální 16S genetika metabolismus MeSH
- rodopsin * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- rhodopsiny mikrobiální MeSH
- RNA ribozomální 16S MeSH
- rodopsin * MeSH
Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.
- Klíčová slova
- anoxygenic photosynthesis, bacteriochlorophyll a, dual phototrophy, light energy, xanthorhodopsin,
- MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriochlorofyly * chemie MeSH
- ekosystém MeSH
- fotosyntéza MeSH
- jezera * analýza MeSH
- protonové pumpy MeSH
- protony MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriochlorofyly * MeSH
- protonové pumpy MeSH
- protony MeSH
- světlosběrné proteinové komplexy MeSH
Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor.
- MeSH
- fylogeneze MeSH
- iontový transport MeSH
- proteinové domény MeSH
- protonové pumpy chemie MeSH
- rodopsin chemie fyziologie MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protonové pumpy MeSH
- rodopsin MeSH